Degree Master of Science in Mathematical Modelling and Scientific Computing Numerical Linear Algebra & Finite Element Methods Thursday, 19th April 2007, 2:00 p.m. – 4:00 p.m.

Candidates may attempt as many questions as they wish. The best four solutions will count.

Please start the answer to each question on a new page. All questions will carry equal marks. **Do not turn over until told that you may do so.**

Finite Element Methods for Partial Differential Equations

Question 1

(i) Define the Sobolev space $H^1(0,1)$ and the Sobolev norm $\|\cdot\|_{H^1(0,1)}$.

What is meant by saying that u is a weak solution in $H^1(0,1)$ of the boundary-value problem

$$-u'' + u = f(x), \quad x \in (0,1); \qquad u(0) - u'(0) = 1, \quad u(1) + u'(1) = 1,$$

[6 marks]

where $f \in L_2(0, 1)$?

(ii) Show that the bilinear form associated with the weak formulation of this problem is coercive on $H^1(0,1)$.

Consider the continuous piecewise linear basis functions φ_i , i = 0, 1, ..., N, defined by $\varphi_i(x) = (1 - |x - x_i|/h)_+$ on the uniform mesh of size h = 1/N, $N \ge 2$, with mesh-points $x_i = ih$, i = 0, 1, ..., N. Using the basis functions φ_i , i = 0, 1, ..., N, define the finite element approximation of the boundary-value problem and show that it has a unique solution u_h . [6 marks]

(iii) Expand u_h in terms of the basis functions φ_i , i = 0, 1, ..., N, by writing

$$u_h(x) = \sum_{i=0}^N U_i \varphi_i(x)$$

where $\mathbf{U} = (U_0, U_1, \dots, U_N)^T \in \mathbb{R}^{N+1}$, to obtain a system of linear algebraic equations for the vector of unknowns U. Show that the matrix \mathcal{A} of this linear system is symmetric (*i.e.* $\mathcal{A}^T = \mathcal{A}$) and positive definite (*i.e.* $\mathbf{V}^T \mathcal{A} \mathbf{V} > 0$ for all $\mathbf{V} \in \mathbb{R}^{N+1}$, $\mathbf{V} \neq \mathbf{0}$). [6 marks]

(iv) Show also that $||u - u_h||_{H^1(0,1)} = \mathcal{O}(h)$ as $h \to 0$.

[Any bound on the error between u and its finite element interpolant $\mathcal{I}_h u$ may be used without proof, but must be stated carefully.] [7 marks]

Question 2

(i) Let $\psi \in L_2(0,1)$ and let $a(\cdot, \cdot)$ be the bilinear form on $H^1(0,1) \times H^1(0,1)$ defined by

$$a(w,v) = \int_0^1 (w'v' + wv) \mathrm{d}x.$$

Suppose, further, that $z \in H^1(0, 1)$ is such that

$$a(w,z) = \int_0^1 w \,\psi \mathrm{d}x \qquad \forall w \in \mathrm{H}^1(0,1).$$

Show that $||z''||_{L_2(0,1)} \le ||\psi||_{L_2(0,1)}$.

(ii) Suppose that $f \in L_2(0,1)$ and let $u \in H^1(0,1)$ be the weak solution of the problem

$$a(u,v) = \int_0^1 f v \mathrm{d}x \qquad \forall v \in \mathrm{H}^1(0,1)$$

Let, further, u_h denote the piecewise linear finite element approximation to u on the subdivision $S_h = \{[x_{i-1}, x_i] : i = 1, 2, ..., N\}$, where $x_i - x_{i-1} = h_i, i = 1, 2, ..., N$.

Show that

$$\int_{0}^{1} (u - u_h) \psi dx = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} R(u_h) (z - \mathcal{I}_h z) dx,$$

where $\mathcal{I}_h z$ is the continuous piecewise linear finite element interpolant of z on the subdivision \mathcal{S}_h , and $R(u_h)$ is the *residual* which you should carefully define in terms of f and u_h . [6 marks]

(iii) Show that

$$\int_0^1 (u - u_h) \, \psi \mathrm{d}x \le \frac{1}{\pi^2} \left(\sum_{i=1}^N \|R(u_h)\|_{\mathrm{L}_2(x_{i-1}, x_i)}^2 h_i^4 \right)^{1/2} \|\psi\|_{\mathrm{L}_2(0, 1)},$$

and deduce the a posteriori error bound

$$||u - u_h||_{\mathcal{L}_2(0,1)} \le \frac{1}{\pi^2} \left(\sum_{i=1}^N ||R(u_h)||^2_{\mathcal{L}_2(x_{i-1},x_i)} h_i^4 \right)^{1/2}.$$

[7 marks]

(iv) Discuss, briefly, how this *a posteriori* error bound could be implemented in an adaptive meshrefinement algorithm to compute, for a prescribed tolerance TOL > 0, an approximation u_h to u such that $||u - u_h||_{L_2(0,1)} \le TOL$. [7 marks]

[5 marks]

Question 3

Suppose that $\Omega = (0,1)^2$ and $f \in L_2(\Omega)$. Consider the quadratic energy-functional $J : H^1(\Omega) \to \mathbb{R}$ defined by

$$J(v) = \frac{1}{2}a(v,v) - \ell(v),$$

where

$$a(w,v) = \int_{\Omega} \left[\frac{\partial w}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial w}{\partial y} \frac{\partial v}{\partial y} + wv \right] \mathrm{d}x \mathrm{d}y \quad \text{and} \quad \ell(v) = \int_{\Omega} fv \mathrm{d}x \mathrm{d}y.$$

(i) Show that u is a minimiser of J over $H^1(\Omega)$ (i.e. $J(u) \leq J(v)$ for all $v \in H^1(\Omega)$) if, and only if,

$$a(u, v) = \ell(v)$$
 for all $v \in \mathrm{H}^1(\Omega)$.

[5+5 marks]

- (ii) Show that $a(\cdot, \cdot)$ and $\ell(\cdot)$ satisfy the hypotheses of the Lax–Milgram Theorem. Hence deduce the existence and uniqueness of the minimiser of J in $H^1(\Omega)$. [7 marks]
- (iii) Consider a triangulation of $\overline{\Omega}$ which has been obtained from a square mesh of spacing h = 1/N, $N \ge 2$, in both co-ordinate directions by subdividing each mesh-square into two triangles with the diagonal of negative slope. Denote by V_h the finite-dimensional subspace of $\mathrm{H}^1(\Omega)$ consisting of continuous piecewise linear functions defined on this triangulation. Show that there exists a unique element u_h in V_h such that $J(u_h) \le J(v_h)$ for all $v_h \in V_h$. Show further that

$$||u - u_h||_{\mathrm{H}^1(\Omega)} = \min_{v_h \in V_h} ||u - v_h||_{\mathrm{H}^1(\Omega)}.$$

[4+4 marks]

Question 4

Let u(x, t) denote the solution to the initial-boundary-value problem

$$\begin{aligned} \frac{\partial u}{\partial t} + u &= \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \quad 0 < t \le T, \\ u'(0,t) &= 0, \quad u'(1,t) = 0, \quad 0 \le t \le T, \\ u(x,0) &= u_0(x), \quad 0 < x < 1, \end{aligned}$$

where $T > 0, u_0 \in L_2(0, 1)$.

- (i) Construct a finite element method for the numerical solution of this problem, based on the Crank–Nicolson scheme with time step Δt = T/M, M ≥ 2, and continuous piecewise linear approximation in x on a uniform subdivision of spacing h = 1/N, N ≥ 2, of the interval [0, 1], denoting by u^m_h the finite element approximation to u(·, t^m) where t^m = mΔt, 0 ≤ m ≤ M. [9 marks]
- (ii) Show that, for $0 \le m \le M 1$,

$$\frac{1}{2\Delta t} \left(\|u_h^{m+1}\|_{\mathcal{L}_2(0,1)}^2 - \|u_h^m\|_{\mathcal{L}_2(0,1)}^2 \right) + \left\| \frac{u_h^{m+1} + u_h^m}{2} \right\|_{\mathcal{L}_2(0,1)}^2 + \left| \frac{u_h^{m+1} + u_h^m}{2} \right|_{\mathcal{H}^1(0,1)}^2 = 0,$$

where $\|\cdot\|_{L_2(0,1)}$ is the L₂-norm on the interval (0,1), and $|\cdot|_{H^1(0,1)}$ is the seminorm of the Sobolev space $H^1(0,1)$.

Hence deduce that the method is unconditionally stable in the L₂-norm in the sense that, for any Δt , independent of the choice of h,

$$||u_h^m||_{\mathcal{L}_2(0,1)} \le ||u_h^0||_{\mathcal{L}_2(0,1)}, \qquad 1 \le m \le M.$$

[9 marks]

(iii) Show that, for each $m, 0 \le m \le M - 1$, u_h^{m+1} can be obtained from u_h^m by solving a system of linear algebraic equations with a symmetric matrix \mathcal{A} whose entries you should define in terms of the standard piecewise linear basis functions $\varphi_i, i = 0, ..., N$. [7 marks]

TURN OVER

Numerical Linear Algebra

Question 5

(a) Arnoldi's method generates a set of orthonormal vectors $\{v_1, v_2, \dots, v_k\}$ which are the columns of the matrix V_k satisfying

$$AV_k = V_{k+1}\hat{H}_k$$

What is the structure of the matrix \hat{H}_k ? For what space does $\{v_1, v_2, \dots, v_k\}$ form a basis? What iterative method for a linear system Ax = b is based on use of Arnoldi's method and computes iterates x_k for which $||r_k||_2$ is minimal where $r_k = b - Ax_k$? Give a brief outline of the algorithm for this iterative method. [2+3+2+6 marks]

- (b) If the matrix A happens to be symmetric, in what way does the Arnoldi method simplify? [4 marks]
- (c) Compute the first two iterates, x_1, x_2 for the linear system

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

when $x_0 = 0$.

Question 6

Let Π_m denote the set of real polynomials of degree m or less.

(a) Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a non-zero vector $r \in \mathbb{R}^n$, how do they define a family of Krylov subspaces \mathcal{K}_k for k = 1, 2, ...? If $\{x_k \in \mathbb{R}^n, k = 0, 1, 2, ...\}$ is a sequence of vectors for which $r_j = b - Ax_j, j = 0, 1, 2, ...$ for a given vector $b \in \mathbb{R}^n$ and which satisfy

$$x_k \in x_0 + \mathcal{K}_k(A, r_0), \quad k = 1, 2, \dots, \quad (\dagger)$$

show that $r_k = p_k(A)r_0$ for some $p_k \in \prod_k$ with $p_k(0) = 1$.

(b) Assume now that A is symmetric and positive definite and that the iterates $x_k, k = 1, 2, ...$ generated by the Conjugate Gradient method for the linear system Ax = b satisfy (†) and

$$||x - x_k||_A \le ||x - y||_A, \quad y \in x_0 + \mathcal{K}_k(A, r_0),$$

where $||r||_A^2 = r^T A r$. Show that

$$||x - x_k||_A \le \min_{p \in \Pi_k, p(0) = 1} \max_j |p(\lambda_j)| ||x - x_0||_A$$

where $\{\lambda_j\}$ are the eigenvalues of A. Indicate why the Conjugate Gradient method will be a particularly effective method for the solution of the linear system is A has few distinct eigenvalues. [8+2 marks]

(c) Explain the idea of preconditioning in connection with the Conjugate Gradient solution of a linear system of equations, clearly outlining what are desirable features of a good preconditioner. [5 marks]

- 6 -

[8 marks]

[4+6 marks]