JMAT 7304

Degree Master of Science in Mathematical Modelling and Scientific Computing Numerical Linear Algebra & Finite Element Methods TRINITY TERM 2012 Friday 20th April 2012, 9.30 a.m. – 11:30 a.m.

Candidates should submit answers to a maximum of four questions that include an answer to at least one question in each section.

Please start the answer to each question on a new page.

All questions will carry equal marks.

Do not turn over until told that you may do so.

Part A — Numerical Linear Algebra

Question 1

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite and $\mathbf{b} \in \mathbb{R}^n$. Let $A = L + D + L^T$ with a strictly lower triangular matrix L and a diagonal matrix D. Given $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the Gauss-Seidel iteration is defined by

$$(D+L)\mathbf{x}^{(j+1)} = \mathbf{b} - L^T \mathbf{x}^{(j)}$$

(a) Define $L_1 = D^{-1/2}LD^{-1/2}$ and $G = D^{1/2}(D+L)^{-1}L^TD^{-1/2}$. Show that

$$G = (I + L_1)^{-1} L_1^T.$$

[7 marks]

Define $e^{(j)} = x - x^{(j)}$, where x is the solution of Ax = b. Show that for any vector norm and induced matrix norm,

$$\|\mathbf{e}^{(j+1)}\| \le \|(D+L)^{-1}L^T\|^{j+1}\|\mathbf{e}^{(0)}\|.$$

[7 marks]

(b) Let λ be the largest eigenvalue of G in magnitude and z be the corresponding eigenvector such that

$$G\mathbf{z} = \lambda \mathbf{z}, \qquad \overline{\mathbf{z}}^T \mathbf{z} = 1.$$

If $\overline{\mathbf{z}}^T L_1^T \mathbf{z} = a + ib$ with $a, b \in \mathbb{R}$, show that

$$|\lambda|^2 = \frac{a^2 + b^2}{1 + 2a + a^2 + b^2}.$$

[7 marks]

(c) Given that 1+2a > 0, what can you deduce about the eigenvalues of $(D+L)^{-1}L^T$ and the convergence of the Gauss-Seidel iteration for positive definite matrices. Explain your answer. [4 marks]

Throughout this question $A \in \mathbb{R}^{n \times n}$ is a symmetric, positive definite matrix.

- (a) Define what is meant by saying that $\{\mathbf{p}_1, \dots, \mathbf{p}_n\} \subset \mathbb{R}^n$ are *A*-conjugate. Show that a basis consisting of orthogonal eigenvectors of *A* consists of *A*-conjugate vectors. [5 marks]
- (b) Define $f(\mathbf{x}) := \frac{1}{2}\mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$ with $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Show that there is a linear function $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$f(\mathbf{x} + \mathbf{p}) = f(\mathbf{x}) + \frac{1}{2}\mathbf{p}^{T}A\mathbf{p} + \mathbf{g}(\mathbf{x})^{T}\mathbf{p}$$

for all $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n$. Show also that there are quadratic polynomials $F_k \in \Pi_2$ for $1 \le k \le n$ such that

$$f\left(\mathbf{x} + \sum_{k=1}^{n} t_k \mathbf{p}_k\right) = f(\mathbf{x}) + \sum_{k=1}^{n} F_k(t_k),$$

where $t_1, \ldots, t_n \in \mathbb{R}$ and $\{\mathbf{p}_1, \ldots, \mathbf{p}_n\}$ are A-conjugate.

(c) Define $K_i = \text{span}\{\mathbf{p}_1, \dots, \mathbf{p}_i\}$, where $\{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ are A-conjugate and $1 \le i \le n$. Let $\mathbf{x}_1 \in \mathbb{R}^n$ be given. Any $\mathbf{x} \in \mathbb{R}^n$ can be written in the form

$$\mathbf{x} = \mathbf{x}_1 + \sum_{k=1}^n \alpha_k \mathbf{p}_k.$$

Determine the coefficients α_k in terms of A, \mathbf{p}_k and $\mathbf{e}_1 = \mathbf{x} - \mathbf{x}_1$. Given that $\|\mathbf{y}\|_A := (\mathbf{y}^T A \mathbf{y})^{1/2}$, $\mathbf{y} \in \mathbb{R}^n$ defines a norm on \mathbb{R}^n , show that

$$\mathbf{x}_{i+1} := \mathbf{x}_1 + \sum_{k=1}^i \alpha_k \mathbf{p}_k$$

is the best approximation to x from $x_1 + K_i$ in this norm, i.e. it satisfies

$$\|\mathbf{x} - \mathbf{x}_{i+1}\|_A \le \|\mathbf{x} - \mathbf{y}\|_A$$

for all $\mathbf{y} \in \mathbf{x}_1 + K_i$.

[10 marks]

[10 marks]

Section B — Finite Element Methods

Question 3

Suppose that (a, b) is a nonempty bounded open interval of the real line.

(a) Define the Sobolev space $H^1(a, b)$ and the Sobolev norm $\|\cdot\|_{H^1(a,b)}$.

What is meant by saying that u is a weak solution in $H^1(a, b)$ of the boundary-value problem

$$-u'' + (\cosh x)u = f(x), \quad x \in (a,b); \qquad u'(a) = 0, \quad u'(b) = 0,$$

where $f \in L^2(a, b)$?

[3 marks]

By using the Lax–Milgram theorem, which you should carefully state, show that this boundary-value problem has a unique weak solution u in $H^1(a, b)$.

[6 marks]

(b) Consider the piecewise linear finite element basis functions φ_i, i = 0, 1, ..., N, defined by φ_i(x) := (1 − |x − x_i|/h)₊, x ∈ [a, b], on the uniform mesh of size h = (b − a)/N, N ≥ 2, with mesh-points x_i = a + ih, i = 0, 1, ..., N.

Show that the basis functions φ_i , i = 0, 1, ..., N are linearly independent. Hence deduce that the finite element space $V_h := \text{span}\{\varphi_0, \varphi_1, ..., \varphi_N\}$ is an (N + 1)-dimensional linear subspace of $H^1(a, b)$.

State the finite element approximation of the boundary-value problem using the basis functions φ_i , i = 0, 1, ..., N, and show that it has a unique solution $u_h \in V_h$.

[6 marks]

(c) Expand u_h in terms of the basis functions φ_i , i = 0, 1, ..., N, by writing

$$u_h(x) = \sum_{i=0}^N U_i \varphi_i(x), \qquad x \in [a, b],$$

where $\mathbf{U} := (U_0, U_1, \dots, U_N)^T \in \mathbb{R}^{N+1}$, to obtain a system of linear algebraic equations for the vector of unknowns \mathbf{U} . Show that the matrix \mathcal{A} of this linear system is symmetric (i.e., $\mathcal{A}^T = \mathcal{A}$).

[4 marks]

(d) Show that u'' ∈ L²(a, b). Show further that there exists a positive constant C, independent of h such that ||u - u_h||_{H¹(a,b)} ≤ Ch||u''||_{L²(a,b)}.

[Any bound on the error between u and its continuous piecewise linear finite element interpolant $\mathcal{I}_h u$ may be used without proof, but must be stated carefully.] [6 marks]

Suppose that Ω is the open square $(-1,1) \times (-1,1)$ in \mathbb{R}^2 whose closure $\overline{\Omega}$ has been subdivided into M closed triangles so that any pair of triangles intersect along a complete edge, at a vertex, or not at all.

(a) State the piecewise linear finite element approximation, on the given triangulation of $\overline{\Omega}$, of the partial differential equation

$$-\Delta u + \frac{\partial u}{\partial x} = 4 \qquad \text{in } \Omega,$$

subject to the homogeneous Dirichlet boundary condition u = 0 on $\partial \Omega$.

[7 marks]

(b) Consider a triangle K in the triangulation of $\overline{\Omega}$ whose vertices P_i , i = 1, 2, 3, numbered in an anticlockwise direction, have position vectors $\mathbf{r}_i = (x_i, y_i)$, i = 1, 2, 3. Suppose, further, that u_h and v_h are linear functions defined on K such that $u_h(P_i) = U_i^K$ and $v_h(P_i) = V_i^K$, i = 1, 2, 3.

Show that

$$\int_{K} \left(\nabla u_h \cdot \nabla v_h + \frac{\partial u_h}{\partial x} v_h \right) \, \mathrm{d}x \, \mathrm{d}y = \left[U_1^K, U_2^K, U_3^K \right] \mathcal{S}_k \left[\begin{array}{c} V_1^K \\ V_2^K \\ V_3^K \end{array} \right],$$

where $k \in \{1, 2, ..., M\}$ is the number of the triangle K in a global element numbering, and S_k is the associated 3×3 element stiffness matrix whose (i, j)-entry is given in terms of the nodal basis functions ψ_i , i = 1, 2, 3, of element K by the formula

$$(\mathcal{S}_k)_{i,j} = \int_K \left(\nabla \psi_i \cdot \nabla \psi_j + \frac{\partial \psi_i}{\partial x} \psi_j \right) \mathrm{d}x \,\mathrm{d}y.$$

Show further that

$$\psi_1(x,y) = a_1(x-x_1) + b_1(y-y_1) + 1,$$

where $a_1 = (y_2 - y_3)/(2|K|), b_1 = (x_3 - x_2)/(2|K|)$, and

$$|K| := \frac{1}{2} \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix}$$

is the area of K. Use a cyclic permutation of the indices to give similar formulae for $\psi_2(x, y)$ and $\psi_3(x, y)$. Compute the (1, 1) entry, $(S_k)_{11}$, of the matrix S_k .

[9 marks]

(c) Now suppose that $\overline{\Omega}$ has been divided into four squares with a uniform mesh of spacing h = 1 in the x and y directions, and that each of the four squares has been further subdivided into two right-angle triangles with the diagonal of negative slope. Let u_h denote the continuous piecewise linear finite element approximation u_h to u on this triangulation. Show that $u_h(0,0) = 1$.

[9 marks]

Suppose that $\Omega = (0,1)^2$ and $f \in L^2(\Omega)$. Consider the quadratic energy-functional $J : H^1(\Omega) \to \mathbb{R}$ defined by

$$J(v) = \frac{1}{2}a(v,v) - \ell(v),$$

where

$$a(w,v) = \int_{\Omega} \left[2^x \frac{\partial w}{\partial x} \frac{\partial v}{\partial x} + 2^y \frac{\partial w}{\partial y} \frac{\partial v}{\partial y} + wv \right] \mathrm{d}x \, \mathrm{d}y \quad \text{and} \quad \ell(v) = \int_{\Omega} fv \, \mathrm{d}x \, \mathrm{d}y$$

(a) Show that u is a minimizer of J over $H^1(\Omega)$ (i.e., $J(u) \leq J(v)$ for all $v \in H^1(\Omega)$) if, and only if,

$$a(u, v) = \ell(v)$$
 for all $v \in \mathrm{H}^1(\Omega)$. (1)

[10 marks]

(b) State the elliptic boundary-value problem whose weak formulation (1) is.

[5 marks]

(c) Consider a triangulation of $\overline{\Omega}$, which has been obtained from a square mesh of spacing h = 1/N, $N \ge 2$, in both co-ordinate directions by subdividing each mesh-square into two triangles with the diagonal of negative slope. Denote by V_h the finite-dimensional subspace of $H^1(\Omega)$ consisting of all continuous piecewise linear functions defined on this triangulation.

Show that there exists a unique element u_h in V_h such that $J(u_h) \leq J(v_h)$ for all $v_h \in V_h$.

[5 marks]

Show further that

$$||u - u_h||_{\mathrm{H}^1(\Omega)} \le \sqrt{2} \min_{v_h \in \mathrm{V}_h} ||u - v_h||_{\mathrm{H}^1(\Omega)}.$$

[5 marks]

Let u = u(x, t) denote the solution to the initial-boundary-value problem

$$\begin{split} &\frac{\partial u}{\partial t} + u = \frac{\partial^2 u}{\partial x^2}, \qquad 0 < x < 1, \quad 0 < t \le T, \\ &\frac{\partial u}{\partial x}(0,t) = 0, \quad \frac{\partial u}{\partial x}(1,t) = 0, \qquad 0 \le t \le T, \\ &u(x,0) = u_0(x), \qquad 0 < x < 1, \end{split}$$

where $T > 0, u_0 \in L^2(0, 1)$.

(a) Construct a finite element method for the numerical solution of this problem, based on the backward Euler scheme with time step $\Delta t = T/M$, $M \ge 2$, and a piecewise linear approximation in x on a uniform subdivision of spacing h = 1/N, $N \ge 2$, of the interval [0, 1], denoting by u_h^m the finite element approximation to $u(\cdot, t^m)$ where $t^m = m\Delta t$, $0 \le m \le M$.

[9 marks]

(b) Show that, for $0 \le m \le M - 1$,

$$\frac{1}{2\Delta t} \left(\|u_h^{m+1}\|_{\mathbf{L}^2(0,1)}^2 - \|u_h^m\|_{\mathbf{L}^2(0,1)}^2 \right) + \frac{1}{2\Delta t} \left\|u_h^{m+1} - u_h^m\right\|_{\mathbf{L}_2(0,1)}^2 + \left\|u_h^{m+1}\right\|_{\mathbf{H}^1(0,1)}^2 = 0,$$

where $\|\cdot\|_{L^2(0,1)}$ is the L²-norm on the interval (0,1), and $\|\cdot\|_{H^1(0,1)}$ is the norm of the Sobolev space $H^1(0,1)$.

Hence deduce that the method is unconditionally stable in the L²-norm in the sense that, for any Δt , independent of the choice of h,

$$||u_h^m||_{L^2(0,1)} \le ||u_h^0||_{L^2(0,1)}, \qquad 1 \le m \le M.$$

[9 marks]

(c) Show that, for each m, 0 ≤ m ≤ M − 1, u_h^{m+1} can be obtained from u_h^m by solving a system of linear algebraic equations with a symmetric matrix A whose entries you should define in terms of the standard piecewise linear basis functions φ_i, 0 ≤ i ≤ N. Show further that the matrix A is positive definite (i.e., V^TAV > 0 for all V ∈ ℝ^{N+1}, V ≠ 0).

[7 marks]