
Degree Master of Science in Mathematical Modelling and Scientific Computing

Numerical Solution of Differential Equations & Numerical Linear Algebra

Friday, 14th January 2011, 9:30 p.m. – 11:30 a.m.

Candidates should submit answers to a maximum of four questions that include an answer to at

least one question in each section.

Please start the answer to each question on a new page.

All questions will carry equal marks.

Do not turn over until told that you may do so.
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Section A —Numerical Solution of Differential Equations

Question 1

Consider the initial-value problem y′ = f(y), y(0) = 1, where f is a twice continuously differentiable
function defined on the real line, such that |f(s)| ≤ 1, |f ′(s)| ≤ 1 and |f ′′(s)| ≤ 1 for all s ∈ R.

[You may assume that this initial-value problem has a unique solution x 7→ y(x), defined for all x ∈ R, such
that the functions x 7→ y′(x), x 7→ y′′(x) and x 7→ y′′′(x) are defined and continuous for all x ∈ R.]

i) Show that the function f satisfies the following Lipschitz condition:

|f(u)− f(v)| ≤ |u− v| ∀u, v ∈ R .

Show further that |y′′(x)| ≤ 1 and |y′′′(x)| ≤ 2 for all x ∈ R. [4 marks]

ii) The trapezium rule approximation yn to y(xn) on the mesh {xn : xn = nh, n = 0, 1, . . . } of uniform
spacing h ∈ (0, 1) is obtained from the formula

yn − yn−1

h
=

1
2

[f(yn) + f(yn−1)] , n = 1, 2, . . . , y0 = 1.

Let g(s) := s − h
2f(s). Show that the function s 7→ g(s) is strictly monotonic increasing and

lims→±∞ g(s) = ±∞. By rewriting the trapezium rule method as g(yn) = yn−1 + h
2f(yn−1), de-

duce that, given yn−1 ∈ R, the trapezium rule approximation yn is uniquely defined in R.

[8 marks]

iii) Show that the truncation error Tn of the method applied to the initial-value problem under consideration
satisfies

Tn = h2

(
1
6
y′′′(ξn)− 1

4
y′′′(ηn)

)
, n = 1, 2, . . . ,

where ξn, ηn ∈ (xn−1, xn). Hence deduce that |Tn| ≤ 5
6h

2. [4 marks]

Show further that

|y(xn)− yn| ≤
2 + h

2− h
|y(xn−1)− yn|+

2h
2− h

|Tn|, n = 1, 2, . . . ,

and deduce that

|y(xn)− yn| ≤
5
6
h2

[(
1 +

2h
2− h

)n

− 1
]
, n = 1, 2, . . . .

Show that there exists h0 ∈ (0, 1) such that if h ≤ h0, then |y(xn) − yn| ≤ 1
210−2 for all xn ∈ [0, 1].

[9 marks]

[The actual value of h0 is not required for a complete answer.]
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Question 2

State the general form of a linear k-step method for the numerical solution of the initial-value problem y′ =
f(x, y), y(x0) = y0 on a nonempty closed interval [x0, X] of the real line. [2 marks]

i) Define the truncation error Tn of the method. [2 marks]

ii) What does it mean to say that the method is:

a) consistent; [2 marks]
b) zero-stable; [2 marks]
c) convergent? [2 marks]

iii) State the root condition, relating zero-stability of a linear k-step method to the roots of a certain kth
degree polynomial. [2 marks]

iv) Show using Dahlquist’s theorem, which you must clearly state, that there is a unique value of the
parameter α ∈ R such that the three-step method

yn+3 = yn+2 +
h

12
[ 23f(xn+2, yn+2)− 16f(xn+1, yn+1) + αf(xn, yn) ]

is convergent. [13 marks]
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Question 3

Consider the initial-value problem

∂u

∂t
=
∂2u

∂x2
− u, −∞ < x <∞, 0 < t ≤ T,

u(x, 0) = u0(x), −∞ < x <∞,

where T is a fixed real number and u0 is a real-valued, bounded and continuous function of x ∈ (−∞,∞).

i) Formulate the θ-scheme for the numerical solution of this initial-value problem on a mesh with uniform
spacings ∆x > 0 and ∆t = T/M in the x and t co-ordinate directions, respectively, where M is a
positive integer and θ ∈ [0, 1]. You should state the scheme so that θ = 1 corresponds to the implicit
(backward) Euler scheme. [7 marks]

ii) Let Um
j denote the numerical approximation to u(j∆x,m∆t) computed by the θ-scheme, 0 ≤ m ≤

M , j ∈ Z, where Z denotes the set of all integers. Suppose that ‖U0‖`2 =
(

∆x
∑

j∈Z |U0
j |2
)1/2

is

finite. Show that if θ ∈ [1
2 , 1], then

‖Um‖`2 ≤ ‖U0‖`2

for all m, 1 ≤ m ≤M , for any ∆t and ∆x.

Now, suppose that θ ∈ [0, 1
2). Show that ‖Um‖`2 ≤ ‖U0‖`2 for all m, 1 ≤ m ≤ M , provided that

(1− 2θ)∆t ≤ 2(∆x)2

4+(∆x)2
.

Deduce that both the implicit (backward) Euler scheme and the Crank–Nicolson scheme are uncondi-
tionally stable in the ‖ · ‖`2 norm.

[9 marks]

iii) Let Um
j denote the numerical approximation to u(j∆x,m∆t) computed by the θ-scheme, 0 ≤ m ≤

M , j ∈ Z, where Z denotes the set of all integers. Suppose that ‖U0‖`∞ = maxj∈Z |U0
j | is finite.

Show that if θ ∈ [0, 1], then

‖Um‖`∞ ≤
(

1− (1− θ)∆t
1 + θ∆t

)m

‖U0‖`∞

for all m, 1 ≤ m ≤M , provided that (1− θ)∆t ≤ (∆x)2

2+(∆x)2
.

Deduce that the implicit (backward) Euler scheme is unconditionally stable in the ‖ · ‖`∞ norm. Show,
further, that the Crank–Nicolson scheme is conditionally stable in the ‖ · ‖`∞ norm and state the condi-
tion on ∆t and ∆x that ensures stability.

[9 marks]
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Question 4

Suppose that a is a non-zero real number, T > 0, and u0 is a real-valued, bounded and continuous function
of x ∈ (−∞,∞). The initial-value problem

ut + aux − u = 0, −∞ < x <∞, 0 < t ≤ T,
u(x, 0) = u0(x), −∞ < x <∞,

has been approximated by the central difference scheme

Um+1
j − Um

j

∆t
+ a

Um
j+1 − Um

j−1

2∆x
− Um

j = 0, j ∈ Z, 0 ≤ m ≤M − 1,

U0
j = u0(xj), j ∈ Z,

where Z denotes the set of all integers, ∆x > 0, ∆t = T/M , and M is a positive integer.

i) Define the truncation error Tm
j of the scheme, and show that Tm

j = O((∆x)2 + ∆t) as ∆x → 0 and
∆t→ 0. [7 marks]

[You may assume that u has as many bounded and continuous partial derivatives with respect to x and
t as are required by your proof.]

ii) Show that if µ = a∆t/∆x is held fixed as ∆t → 0, then the difference scheme is not stable in the `2
norm in von Neumann’s sense. [9 marks]

iii) Show that if ν = a∆t/(∆x)2 is held fixed as ∆t→ 0, then the scheme is stable in the `2 norm in von
Neumann’s sense. [9 marks]
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Section B — Numerical Linear Algebra

Question 5

(a) Let ‖ · ‖ and ‖ · ‖∗ be two norms on Rn. Show that

‖A‖ := sup
x∈Rn\{0}

‖Ax‖
‖x‖∗

, A ∈ Rn×n,

defines a norm on the vector space of all n× n matrices. [3 marks]

(b) The `p norms on Rn are defined as

‖x‖p :=


(∑n

j=1 |xj |p
)1/p

for 1 ≤ p <∞,
max1≤j≤n |xj | for p =∞.

Following (a), we can introduce the induced matrix norm

‖A‖p,q := sup
x∈Rn\{0}

‖Ax‖q
‖x‖p

, A ∈ Rn×n.

Give explicit formulas (without proof) for ‖A‖∞,∞, ‖A‖1,1 and ‖A‖2,2 and compute these norms for

A =
(

2 1
0 1

)
.

[6 marks]

(c) Using the same notation, show that

‖A‖1,∞ = sup
x∈Rn\{0}

‖Ax‖∞
‖x‖1

= max
1≤i,j≤n

|aij |.

[6 marks]

(d) Show that ‖A‖2,2 ≤
√
‖A‖1,1‖A‖∞,∞. [5 marks]

(e) Define the condition number κ(A) of an invertible matrix A ∈ Rn×n. Show that, if using the matrix
norm induced by the Euclidean norm,

κ(ATA) = κ(A)2 ≥ κ(A).

[5 marks]
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Question 6

(a) Define what theLU factorisation of a matrixA ∈ Rn×n is. Use Gaussian elimination (without pivoting)
to compute the LU factorisation of the matrix

A =

2 1 2
0 3 −1
4 5 4

 .

[5 marks]

(b) Define the Cholesky factorisation of a symmetric matrix A ∈ Rn×n. Suppose A allows an LU fac-
torisation A = L̃Ũ , where Ũ has only positive diagonal entries show that A possesses a Cholesky
factorisation. [8 marks]

(c) Suppose the invertible matrixA ∈ Rn×n possesses a Cholesky factorisation. Show that A is symmetric
and positive definite. [4 marks]

(d) Suppose A ∈ Rn×n is a tridiagonal matrix with diagonal elements a1, . . . , an, subdiagonal elements
b2, . . . , bn and superdiagonal elements c1, . . . , cn−1, i.e.

A =


a1 c1

b2 a2 c2

. . . . . . . . .
bn−1 an−1 cn−1

bn an

 .

Assume that
|a1| > |c1| > 0,
|ai| ≥ |bi|+ |ci|, bi 6= 0, ci 6= 0, 2 ≤ i ≤ n− 1,
|an| > |bn| > 0.

Consider the following algorithm to generate two vectors ` = (`j) ∈ Rn−1 and r = (rj) ∈ Rn:

– r1 = a1,
– for i = 2, . . . , n
• `i = bi/ri−1

• ri = ai − `ici−1.

Show by induction on 1 ≤ i ≤ n− 1 that ri 6= 0 and |ci/ri| < 1 such that the algorithm is indeed well
defined.

Conclude that A possesses the LU factorisation

A =


1
`2 1

. . . . . .
`n 1



r1 c1

r2
. . .
. . . cn−1

rn


and that A is invertible. [8 marks]
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