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Main results

Motivating question: can we provably show that some lattices can be reduced
using SVP oracles in dimensions substantially smaller than their rank n?

Previous work:
- Heuristic estimates.
- Dimension n/2 SVP oracles are enough to reduce Zn [Duc23].

Our results:
- Oracles in [Duc23] can be relaxed to approximate-SVP oracles.
- For many NTRU instances: n/2 is also sufficient.

" We do not claim any security loss on ZLIP or NTRU based schemes. "
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Lattice algorithms
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Building block: SVP Reduction
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γ-SVP oracle

Outputs a basis B whose first Gram-Schmidt norm is ∥b⋆1 ∥ ≤ γλ1(L (B)).
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Two very special lattices

Hypercubic Lattices:
. Orthonormal basis
. Used in Lattice Isomorphism

Problem (ZLIP) and HAWK
[DvW22, DPPvW22]

NTRU Lattices:
. Module structure
. Used in many schemes and

standards: NTRU, Falcon, ...
[HPS98, CDH+20, FHK+19]

- In general, lattice reduction estimates are heuristic and rely on low-dim
experiments and predictions on the behaviour of lattice algorithms (BKZ).
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Provable reduction with smaller blocks: what do we know?

Question
Is it possible to provably solve SVP in special families of lattices of rank n using only
SVP-oracles in dimension β=αn for a constant α< 1?

For Hypercubic Lattices:
- In 2023, Ducas proved that
α= 1

2 suffices [Duc23].

For NTRU Lattices:
- Until now, no α better than 1.
- In 2006, Gama, Howgrave-

Graham and Nguyen conjectured
α< 1 [GHN06].
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Duality

Dual lattice
Every lattice Λ can be paired up with a dual lattice Λ×.

Dual basis
Every lattice basis (b1, . . . ,bn) can be paired up with a dual basis (d1, . . . ,dn), which is
such that

∥b⋆n∥−1 = ∥d⋆1 ∥.

Hypercubic lattices are isodual! (Λ=Λ×)
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Building block: Dual-SVP Reduction
lo
g
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∥
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γ-Dual-SVP oracle

Outputs a basis B whose first dual Gram-Schmidt norm is

∥d⋆1 ∥ = ∥b⋆n∥−1 ≤ γλ1(L (B)).
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Primal/Dual Reduction: A nice tool for provable reduction

Λ=L (b1, . . . ,bn) L=L (b1, . . . ,bk) N =L (b1, . . . ,bk+1)

Λ

L
N

Dimension n= 2k +1

lo
g
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⋆ i
∥

We know that

vol(N)= vol(L)∥b⋆k+1∥.
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Slide-inspired Reduction: Primal step

Λ=L (b1, . . . ,bn) L=L (b1, . . . ,bk) N =L (b1, . . . ,bk+1)

Λ

L
N

Dimension n= 2k +1

Dim-(k +1)

SVP(Λ/L)

SVP(Λ/L)

lo
g
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∥

After SVP-reduction:

∥b⋆k+1∥ =λ1(Λ/L).
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Slide-inspired Reduction: Dual step

Λ=L (b1, . . . ,bn) L=L (b1, . . . ,bk) N =L (b1, . . . ,bk+1)

Λ

L
N

Dimension n= 2k +1

Dim-(k +1)

SVP(Λ/L)

Dim-(k +1)

Dual-SVP(N)

D-SVP(N)

lo
g
∥b

⋆ i
∥

After D-SVP-reduction:

∥b⋆k+1∥−1 =λ1(N
×).
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Slide-inspired Reduction: Analysis

How does each Primal/Dual step change vol(L)?

After the Primal step

vol(N)= vol(L)λ1(Λ/L)

Finally

vol(L′)
vol(L)

=λ1(Λ/L)λ1(N
×)

After the Dual step

vol(N)= vol(L′)λ1(N
×)−1

. If λ1(Λ/L)λ1(N
×)< 1− 1

poly(n) , we win!

. For general lattices, we can only use Minkowski’s theorem
to bound λ1(Λ/L) and λ1(N

×).
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Ducas’ idea: bounding λ1 for projections of Zn

Lemma (From [Duc23])

Let L be a sublattice of Zn of rank k and volume vol(L)> 1 such that πL⊥(Zn) is a
lattice, then

λ1(πL⊥(Zn))≤
√

1− 1
n

.

- Gives much stronger bound on λ1(Λ/L)λ1(N
×) than Minkowski’s theorem.

- vol(L) decreases by at least (1− 1
n ) at each Primal/Dual step.
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A more general result and how to use it

Lemma
Let L be a sublattice of Zn of rank k such that λ1(L)> 1 and πL⊥(Zn) is a lattice, then

λ1(πL⊥(Zn))≤
√

1− k

n
.

- In particular if k = n
2 , then λ1(πL⊥(Zn))≤ 1p

2
.
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Modified algorithm: relaxing the approximation factor

Input: A bad basis of a hypercubic Λ
Main loop:

I. Check for unit vectors in L

II. γ-SVP reduce Λ/L
III. Check for unit vectors in (Λ×/N)×

IV. γ-Dual-SVP reduce N

Each line only uses a γ < p
2 approximation oracle in

halved dimension. vol(L) decreases by at least:

γ2λ1(Λ/L)λ1(N
×)≤ γ2/2= 1−ε.
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Does it matter? Perspectives

- The best (provable and heuristic) algorithms for ZLIP run in 2n/2+o(n).
- For large enough (constant) γ, dim n/2 γ-SVP runs in 20.401n+o(n).

Open problems:
. What is the real cost of solving

p
2-SVP?

. Can we break the n/2 barrier for ZLIP?

. Is the “easiest lattice” really that hard?
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Observation: a similar algorithm works more generally

Using exact-SVP-oracles: at each step vol(L) is multiplied by λ1(Λ/L)λ1(N
×).

Quick Lemma
If λ1(L)>λ1(Λ), then λ1(Λ/L)≤λ1(Λ).

Consequence: Testing λ1(L)>λ1(Λ) with an SVP-oracle
=⇒ at each step vol(L) is multiplied by at most λ1(Λ)λ1(Λ

×).

Surely no reasonable lattice family satisfies λ1(Λ)λ1(Λ
×)< 1−ε ??
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The symplectic nature of NTRU

Lemma (rescaled NTRU is isodual)

If Λ is a NTRU lattice with modulus q over a ring Z[X ]/(X n±1), then Λ and qΛ× are
isometric.

For such lattices, λ1(Λ)λ1(Λ
×)= λ1(Λ)

2

q .
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So when is λ1(Λ)λ1(Λ
×)< 1−ε ??

Upper bound on λ1(Λ)λ1(Λ
×) for various NTRU parameters

Lattice λ1(Λ)λ1(Λ
×) 1

2λ1(Λ)λ1(Λ
×) Approx factor

NIST-1 [CDH+20] .2897 .1449 2.628

NIST-3 [CDH+20] .3444 .1722 2.410

NIST-5 [CDH+20] .2581 .1291 1.969

Falcon-512 [FHK+19] 1.341 .6706 1.251

Falcon-1024 [FHK+19] 1.342 .6708 1.250

Conclusion: Many NTRU instances are provably solvable with n/2 SVP oracles only.
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Comparing with Primal Attack Asymptotics

Asymptotically, how close are the best provable and heuristic estimates?

Lattice Provable blocksize Heuristic blocksize (GSA + 2016 est.)

Hypercubic n/2+o(n) n/2−o(n)

NTRU1 n/2+o(n) 4n/9−o(n)

This confirms that non-uniqueness of the shortest vector is not directly relevant to the
optimal blocksize.

1Assuming q =Θ(n) and λ1(Λ)=Θ(
p
n).
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Recap/Takeaway

Conclusions:
. Like Zn, NTRU’s geometry makes it easier to provably reduce.
. We give an algorithm that uses dim n/2 SVP-oracles.
. Those oracles can be relaxed by a constant γ.
. We help reduce the gap between provable and heuristic results.
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The End

Bonus questions:
. Which of NTRU and ZLIP is easier?
. Can we exploit isoduality better?
. Can Primal/Dual reduction be made practical?

Check out the paper at:

iacr.org/2024/601.
(revision very soon)

Thank you
For listening! :-)
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