

A SUBEXPONENTIAL QUANTUM ALGORITHM FOR THE SEMIDIRECT DISCRETE LOGARITHM PROBLEM

Friday 14th June, 2024

Christopher Battarbee, Delaram Kahrobaei, Ludovic Perret and Siamak F. Shahandashti

Historical Disclaimer

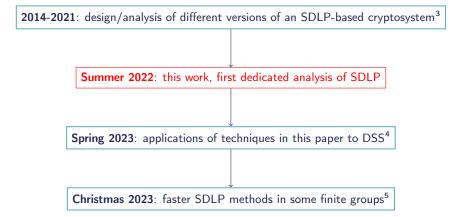
Comparison with Recent Work

Not this work ¹ , ²	This work
Reduction to quantum-easy prob- lems	Reduction to quantum-hard-ish problem
Works for some finite groups but not for semigroups	Works for any finite semigroup

¹Imran and Ivanyos 2023.

²Mendelsohn, Dable-Heath, and Ling 2023.

Timeline



³Habeeb, Kahrobaei, Koupparis, and Shpilrain 2014.

⁴B., Kahrobaei, Perret, and Shahandashti 2023.

⁵Imran and Ivanyos 2023; Mendelsohn, Dable-Heath, and Ling 2023.

SCIENCES SORBONNE UNIVERSITÉ

Definitions

Semidirect Product

Let G be a finite semigroup and End(G) its semigroup of endomorphisms. We define $G \rtimes End(G)$ to be the semigroup of pairs in $G \times End(G)$ equipped with the following multiplication:

$$(g,\phi)(h,\psi) := (g\phi(h),\phi\circ\psi)$$

SCIENCES SORBONNE UNIVERSITÉ

Definitions

Semidirect Product

Let G be a finite semigroup and End(G) its semigroup of endomorphisms. We define $G \rtimes End(G)$ to be the semigroup of pairs in $G \times End(G)$ equipped with the following multiplication:

$$(g,\phi)(h,\psi) := (g\phi(h),\phi\circ\psi)$$

Notice

$$(g, \phi)^{2} = (g\phi(g), \phi^{2})$$

$$(g, \phi)^{3} = (g, \phi)(g\phi(g), \phi^{2}) = (g\phi(g)\phi^{2}(g), \phi^{3})$$

$$(g, \phi)^{4} = (g, \phi)(g\phi(g)\phi^{2}(g), \phi^{3}) = (g\phi(g)\phi^{2}(g)\phi^{3}(g), \phi^{4})$$

A Group Action 0000

Definitions

Semidirect Exponentiation

Fix $(g, \phi) \in G \rtimes End(G)$. Define $s_{g,\phi} : \mathbb{N} \to G$ to be the group element such that

$$(g,\phi)^{\times} = (s_{g,\phi}(x),\phi^{\times})$$

We have seen that

$$s_{g,\phi}(x) = g\phi(g)...\phi^{x-1}(g)$$

SDLP

Fix $G \rtimes End(G)$ and a pair (g, ϕ) . Suppose we are given $s_{g,\phi}(x)$ for some $x \in \mathbb{N}$. The Semidirect Discrete Logarithm Problem is to recover x.

A Group Action 0000

The Reduction 000000

Examples

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{Sciences}\\
\text{sorbonne}\\
\text{universite}\\
\end{array}$$

Let
$$G = M_3(\mathbb{Z}_3)$$
, $A = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, $\phi_B(M) = BMB^{-1}$.

Then

A Group Action 0000

The Reduction 00000

Examples

Let
$$G = M_3(\mathbb{Z}_3)$$
, $A = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, $\phi_B(M) = BMB^{-1}$.
Then
 $s_{A,\phi_B}(2) = A\phi_B(A) = ABAB^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

A Group Action 0000

Examples

Let
$$G = M_3(\mathbb{Z}_3)$$
, $A = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, $\phi_B(M) = BMB^{-1}$.
Then
 $s_{A,\phi_B}(2) = A\phi_B(A) = ABAB^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $s_{A,\phi_B}(3) = A\phi_B(A)\phi_B^2(A) = A(BAB^{-1})(B^2AB^{-2}) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

SCIENCES SORBONNE UNIVERSITÉ

Examples

L

Let
$$G = M_3(\mathbb{Z}_3)$$
, $A = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, $\phi_B(M) = BMB^{-1}$.
Then
 $s_{A,\phi_B}(2) = A\phi_B(A) = ABAB^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $s_{A,\phi_B}(3) = A\phi_B(A)\phi_B^2(A) = A(BAB^{-1})(B^2AB^{-2}) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $s_{A,\phi_B}(4) = A(BAB^{-1})(B^2AB^{-2})(B^3AB^{-3}) = \begin{pmatrix} 2 & 0 & 2 \\ 2 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$

Examples

L

Let
$$G = M_3(\mathbb{Z}_3)$$
, $A = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, $\phi_B(M) = BMB^{-1}$.
Then
 $s_{A,\phi_B}(2) = A\phi_B(A) = ABAB^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $s_{A,\phi_B}(3) = A\phi_B(A)\phi_B^2(A) = A(BAB^{-1})(B^2AB^{-2}) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $s_{A,\phi_B}(4) = A(BAB^{-1})(B^2AB^{-2})(B^3AB^{-3}) = \begin{pmatrix} 2 & 0 & 2 \\ 2 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$

$$s_{A,\phi_B}(10) = egin{pmatrix} ... \ 1 & 2 & 0 \ 1 & 2 & 0 \ 0 & 0 & 0 \end{pmatrix} = s_{A,\phi_B}(2)$$

A Group Action

A Group Action 00000

The * Operator

$$(s_{g,\phi}(x+y), \phi^{x+y}) = (g, \phi)^{x+y} = (g, \phi)^x (g, \phi)^y = (s_{g,\phi}(x), \phi^x) (s_{g,\phi}(y), \phi^y) = (s_{g,\phi}(x) \phi^x (s_{g,\phi}(y)), \phi^{x+y})$$

so $s_{g,\phi}(\mathbf{x} + y) = s_{g,\phi}(\mathbf{x})\phi^{\mathbf{x}}(s_{g,\phi}(y))$. We can add in the argument of $s_{g,\phi}$.

The * Operator

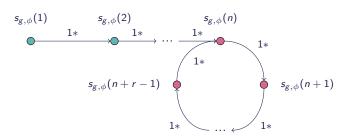
$$(s_{g,\phi}(x+y), \phi^{x+y}) = (g, \phi)^{x+y} = (g, \phi)^x (g, \phi)^y = (s_{g,\phi}(x), \phi^x) (s_{g,\phi}(y), \phi^y) = (s_{g,\phi}(x) \phi^x (s_{g,\phi}(y)), \phi^{x+y})$$

so $s_{g,\phi}(\mathbf{x} + y) = s_{g,\phi}(\mathbf{x})\phi^{\mathbf{x}}(s_{g,\phi}(y))$. We can add in the argument of $s_{g,\phi}$.

*
Let
$$\mathcal{X}_{g,\phi} = \{s_{g,\phi}(i) : i \in \mathbb{N}\}$$
, and define $* : \mathbb{N} \times \mathcal{X}_{g,\phi} \to \mathcal{X}_{g,\phi}$ by
 $x * s_{g,\phi}(y) = s_{g,\phi}(x)\phi^{x}(s_{g,\phi}(y))$
We have $x * s_{g,\phi}(y) = s_{g,\phi}(x + y)$.

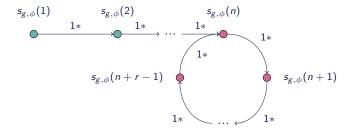
Shape of
$$\mathcal{X}_{g,\phi}$$

Set
$$\mathcal{X}_{g,\phi} = \{s_{g,\phi}(i) : i \in \mathbb{N}\}.$$



Shape of
$$\mathcal{X}_{g,\phi}$$

Set
$$\mathcal{X}_{g,\phi} = \{s_{g,\phi}(i) : i \in \mathbb{N}\}$$



Terminology

We call *n* the index, *r* the period, $\{g, ..., s_{g,\phi}(n-1)\}$ the tail, and $\{s_{\sigma,\phi}(n), \dots, s_{\sigma,\phi}(n+r-1)\}$ the cycle.

Definitions

SCIENCES SORBONNE UNIVERSITÉ

Finite Group Action

Let G be a finite group, X be a finite set and * be a function *: $G \times X \rightarrow X$. The tuple (G, X, *) is a group action if $1_G * x = x$ for each $x \in X$ (gh) * x = g * (h * x) for each $g, h \in G, x \in X$

Vectorisation⁶/Group Action DLog

Let (G, X, *) be a group action. Given $x, y \in X$, the vectorisation problem is to find a g (if one exists) such that g * x = y.

⁶Couveignes 2006.

Contributions

Theorem [B., Kahrobaei, Perret, Shahandashti]

Let *G* be a finite semigroup and consider the semigroup $G \rtimes End(G)$. Fix a pair $(g, \phi) \in G \rtimes End(G)$, and let $\mathcal{C}_{g,\phi}$ denote the corresponding cycle. The tuple $(\mathbb{Z}_r, \mathcal{C}_{g,\phi}, \circledast)$ is a free, transitive group action, where *r*, the period associated to (g, ϕ) , is $|\mathcal{C}_{g,\phi}|$.

Contributions

Theorem [B., Kahrobaei, Perret, Shahandashti]

Let *G* be a finite semigroup and consider the semigroup $G \rtimes End(G)$. Fix a pair $(g, \phi) \in G \rtimes End(G)$, and let $\mathcal{C}_{g,\phi}$ denote the corresponding cycle. The tuple $(\mathbb{Z}_r, \mathcal{C}_{g,\phi}, \circledast)$ is a free, transitive group action, where *r*, the period associated to (g, ϕ) , is $|\mathcal{C}_{g,\phi}|$.

Theorem [B., Kahrobaei, Perret, Shahandashti]

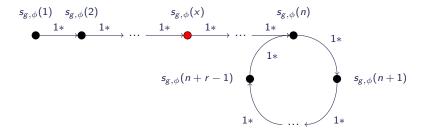
There is a fast quantum reduction from SDLP w.r.t (g, ϕ) to a vectorisation problem, and therefore quantum algorithms for SDLP of quantum complexity $2^{\mathcal{O}(\sqrt{\log r})}$, where *r* is the period associated to (g, ϕ) .

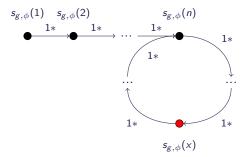
The Reduction

- Well-known that the Vectorisation Problem reduces to dihedral hidden subgroup problem. $^{7}\,$
- Dihedral hidden subgroup problem admits (a) quantum algorithm with complexity $2^{\mathcal{O}(\sqrt{\log n})}$ for D_{2n} .⁸
- Reduction of Semigroup DLog to a DLog problem has to address a similar structure to us. 9

 ⁷Childs, Jao, and Soukharev 2014.
 ⁸Kuperberg 2005.
 ⁹Childs and Ivanyos 2014.

Scenario 1: x < n





Roadmap Given n, r

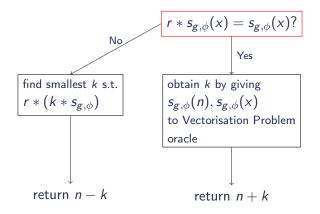
Suppose we are given n, r.

Roadmap Given *n*, *r*

Suppose we are given n, r. Notice that $r * s_{g,\phi}(x) = s_{g,\phi}(x) \iff s_{g,\phi}(x) \in \mathcal{C}_{g,\phi}(x)$

Roadmap Given n, r

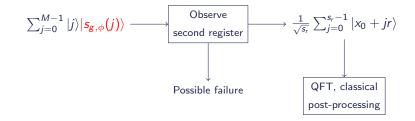
Suppose we are given n, r. Notice that $r * s_{g,\phi}(x) = s_{g,\phi}(x) \iff s_{g,\phi}(x) \in C_{g,\phi}$



Computing *n*, *r*

Given r compute n as the smallest integer such that $r * s_{g,\phi}(n) = s_{g,\phi}(n).$

Given r compute n as the smallest integer such that $r * s_{g,\phi}(n) = s_{g,\phi}(n)$.



Conclusions

Takeaways and Open Problems

One can solve SDLP for (g, ϕ) in quantum time $2^{\mathcal{O}(\sqrt{\log r})}$ where *r* is a function of g, ϕ - not much known about its size. In the generic case this remains state-of-the-art; possible that specific semigroups would yield faster results Fast classical methods of computing *n*, *r* might give us interesting crypto.

Fast SDLP now resolved for *all** finite groups.

https://eprint.iacr.org/2024/905

More on group-based cryptography:

http://aimpl.org/postquantgroup/

*up to constructive recognition.