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Equivalence Problems in Cryptography

Several protocols have been proposed using hard problems as
underlying assumption consisting of finding the
equivalence/isomorphism between two algebraic/geometrical
objects.

In the NIST Standardization of Additional Digital Signature
Schemes we find:
▶ LESS [1] ← equivalence of linear codes
▶ MEDS [7] ← equivalence of matrix codes
▶ ALTEQ [4] ← equivalence of alternating trilinear forms
▶ HAWK [5] ← isomorphism of lattices
▶ SQIsign [6] ← isogenies between supersingular elliptic curves

Benčina, Budroni, Chi-Domínguez, Kulkarni 2 / 23



Equivalence Problems in Cryptography

Several protocols have been proposed using hard problems as
underlying assumption consisting of finding the
equivalence/isomorphism between two algebraic/geometrical
objects.

In the NIST Standardization of Additional Digital Signature
Schemes we find:
▶ LESS [1] ← equivalence of linear codes
▶ MEDS [7] ← equivalence of matrix codes
▶ ALTEQ [4] ← equivalence of alternating trilinear forms
▶ HAWK [5] ← isomorphism of lattices
▶ SQIsign [6] ← isogenies between supersingular elliptic curves

Benčina, Budroni, Chi-Domínguez, Kulkarni 2 / 23



Equivalence Problems in Cryptography

▶ Some equivalence problems have been modeled under the
framework of group actions.

This framework brings the following benefit. It allows us to

1. Define a cryptographic primitive in general for group actions,

2. Instantiate the primitive with a specific group action.

Examples: (Linkable) Ring Signatures [3], Updatable Encryption
[10], Threshold signatures [2], MPCiTH [9].
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Contributions

• In this work, we formalize Lattice Isomorphism as a group action,
and study its cryptographic properties.

• Our study highlights that certain group actions-based primitives
cannot be instantiated securely with Lattice Isomorphism.

• We introduce two new hard problems (and prove them to be)
equivalent to LIP - one of which appeared already for isogenies [8].
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Lattices

A lattice is the set of all integer linear combinations of a basis
B = b1, · · · ,bn,∈ Rn

L(B) =

{
n∑

i=1

αibi , αi ∈ Z

}
.

b1b2
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Lattice Isomorphism

Two lattices L1(B) and L2(B
′) are isomorphic if there exist an

ortonormal matrix O and an invertible integer matrix U such that

B ′ = OBU

O, U
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Lattice Isomorphism Problem

Definition (LIP)

Given two basis B,B ′, find (if they exist) an orthonormal matrix
O ∈ On(R) and an invertible integer matrix U ∈ GLn(Z) such that

B ′ = OBU.

The orthonormal matrix O has, in general, entries in R. For this
reason, in practice, one uses quadratic forms as follows

Q = B⊤B ∈ S>0
n

Q ′ = B ′⊤B ′ = U⊤B⊤O⊤OBU = U⊤QU ∈ S>0
n
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Lattice Isomorphism Problem Reformulated

We can reformulate LIP in terms of Quadratic Forms

Definition (LIP - Quadratic Forms)

Given two quadratic forms Q,Q ′, find (if it exists) an invertible
integer matrix U ∈ GLn(Z) such that

Q ′ = U⊤QU.

We denote with [Q] the equivalence class of all quadratic forms Q ′

equivalent to Q.
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Group Actions

Definition
Let (G , ◦) be a group, and X be a set. G is said to act on X if
there exists a map

⋆ : G × X → X

satisfying the following properties:
▶ identity: id ⋆ x = x , for every x ∈ X and id ∈ G identity,
▶ compatibility: (g ◦ h) ⋆ x = g ⋆ (h ⋆ x), ∀g , h ∈ G , x ∈ X .

Basic properties.
▶ Transitive, ∀x1, x2 ∈ X , ∃g ∈ G : x2 = g ⋆ x1.
▶ Faithful, x = g ⋆ x ,∀x ∈ X ⇒ g = id .
▶ Free, x = g ⋆ x , for some x ∈ X ⇒ g = id .
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Cryptographic Group Action

Properties for the use of group actions in Cryptography.

• One-wayness: Given x , x ′ ∈ X such that

x ′ = g ⋆ x , g ∈ G ,

it is hard to find g .

• Weak-unpredictability: Given a polynomial number of pairs
(xi , g ⋆ xi ) ∈ X × X , and given y ∈ X , it is hard to compute
g ⋆ y .

• Weak-pseudorandomness: It is hard to distinguish a
polynomial number of pairs (xi , g ⋆ xi ) ∈ X × X , from random
pairs (xi , yi ) ∈ X × X .
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Lattice Isomorphism Group Action (LIGA)

- Define as the base set X = [Q], for a chosen quadratic form Q.

- Define the group as the quotient

G = GLn(Z)/≃± =: GL±n (Z)

where
A ≃± B ⇐⇒ A = ±B,

and operation A ◦ B = BA, for A,B ∈ GL(Z) .

- Define the action ⋆ : (GL±n (Z)× [Q])→ [Q]

⋆ : (U,Q0) 7→ U ⋆ Q0 := U⊤Q0U,

→ ⋆ is compatible and the identity element In ∈ GL±n (Z) fixes any
element of [Q] ⇒ it is a group action
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Basic Properties of LIGA

• Transitivity. ✓

• Faithfulness. ✓

• Free. ⇐⇒ Q has trivial automorphism group
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Cryptographic Properties of LIGA

• One-wayness. ✓
(assuming LIP hard to solve ⇒ LIGA is one-way)

• Weak-unpredictability. ?

• Weak-pseudorandomness. ?
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Cryptographic Properties of LIGA

Theorem (informal)

Given d = n(n−1)
2 ∈ O(n2) independent LIP samples1

Q ′
i = U⊤QiU, i = 1, . . . , d ,

then one can retrieve the secret U in polynomial time O(n2ω),
where ω ∈ [2, 3].

▶ LIGA is not weakly-unpredictable
▶ LIGA is not weakly-pseudorandom

1sampled according to a certain distribution.
Benčina, Budroni, Chi-Domínguez, Kulkarni 14 / 23
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Cryptographic Properties of LIGA

proof.(informal)

• Given one sample Q ′ = U⊤QU, write the d-dimensional linear
system of equation in d2 variables

Q ′
i ,j =

n∑
k=1

n∑
l=1

Qk,l · X(i ,k),(j ,l)

where X(i ,k),(j ,l) = Ui ,k · Uj ,l for each i , j , k, l ∈ {1, . . . , n}.

• Given d samples, construct a determined linear system and solve
it – Gaussian elimination.

• Retrieve U from the values X(i ,k),(j ,l).
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Time/Samples Trade-off using Gröbner basis

In the system Q ′ = U⊤QU

Q ′ =

u1,1 · · · un,1
...

. . .
...

u1,n · · · un,n

 · Q ·
u1,1 · · · u1,n

...
. . .

...
un,1 · · · un,n


we consider only norm equations, that is, equations in n variables of
the form

U⊤
i QUi = Q ′

i ,i , for i = 1, . . . , n.

Proposition (informal)

For an index of regularity i ≥ 2 and at least m = O(n
2

i2
) LIP

samples, one can retrieve the secret U in time O(n2+iω), where
ω ∈ [2, 3].

Benčina, Budroni, Chi-Domínguez, Kulkarni 16 / 23



Time/Samples Trade-off using Gröbner basis

In the system Q ′ = U⊤QU

Q ′ =

u1,1 · · · un,1
...

. . .
...

u1,n · · · un,n

 · Q ·
u1,1 · · · u1,n

...
. . .

...
un,1 · · · un,n


we consider only norm equations, that is, equations in n variables of
the form

U⊤
i QUi = Q ′

i ,i , for i = 1, . . . , n.

Proposition (informal)

For an index of regularity i ≥ 2 and at least m = O(n
2

i2
) LIP

samples, one can retrieve the secret U in time O(n2+iω), where
ω ∈ [2, 3].

Benčina, Budroni, Chi-Domínguez, Kulkarni 16 / 23



Comparison

n 16 32 64 128 256 512 1024

LIN. 22.5 28.1 33.7 39.3 44.9 50.5 56.2

GB - ireg = 2 30.5 38.1 45.7 53.3 60.9 68.5 76.2

GB - ireg = 3 41.7 52.1 62.5 73.0 83.4 93.8 104.2

GB - ireg = 4 52.9 66.2 79.4 92.6 105.8 119.1 132.3

GB - ireg = 5 64.2 80.2 96.2 112.3 128.3 144.3 160.4

Estimated bit complexity comparison - Linearization vs. Gröbner
basis approaches.

Benčina, Budroni, Chi-Domínguez, Kulkarni 17 / 23



Experiments

n 16 20 24 28 32 36 40

LIN. 0.34 1.00 1.98 3.36 5.51 10.57 17.31

GB 2.04 5.64 13.40 31.59 67.72 130.52 252.16

Time in seconds for breaking weak-unpredictability - both with
m = n(n−1)

2 samples. In the case of Gröbner basis, we considered
the case of ireg = 2.
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Two New Hard Problems

We use our result to derive the following two new hard problems.

Definition (Transpose Quadratic Form Problem (TQFP))

Given Q and Q ′ = U⊤QU, find Q̃ = UQU⊤.

Definition (Inverse Quadratic Form Problem (IQFP))

Given Q and Q ′ = U⊤QU, find Q̃ = (U−1)⊤Q(U−1).

We show that with O(n2) calls to an oracle that solves TQFP (or
IQFP), one can solve LIP.
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Two New Hard Problems

Sketch of the reduction. (LIP → TQFP).

Given an LIP instance (Q,Q ′ = U⊤QU), we give it as input to the
TQFP oracle and get (Q, Q̃ = UQU⊤)

▶ Sample a quadratic form Q̄ = W⊤QW along with
W ∈ GLn(Z).

▶ Compute Q ′′ = WQ̃W⊤ = WUQU⊤W⊤ and send (Q,Q ′′) to
the TQFP oracle. Record its response as

Q̂ = U⊤W⊤QWU = U⊤Q̄U.

This is a a new LIP sample with U as unknown unimodular
matrix.

Repeating the above two steps for O(n2) times, one obtains
enough samples to retrieve the secret. (Same procedure for IQFP).
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Implications of our work

What can/can’t you do with LIP
(what can/can’t you do with one-wayness only)

ID scheme/
commitment PRF

updatable
signature encryption

✓ ✓ ✗ ✗
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Thanks for listening!
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