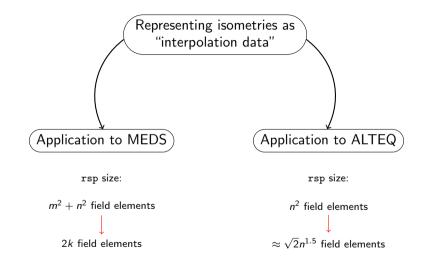
#### Reducing Signature Size of Matrix-code-based Signature Schemes

https://ia.cr/2024/495


Tung Chou<sup>1</sup>, Ruben Niederhagen<sup>1</sup>, Lars Ran<sup>2</sup>, Simona Samardjiska<sup>2</sup>

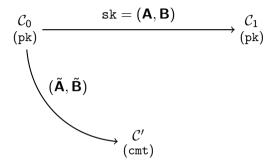
<sup>1</sup>Academia Sinica

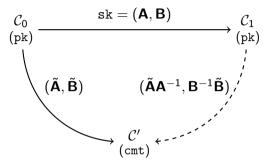
<sup>2</sup>Radboud University

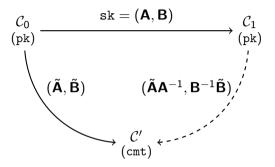
June 14, 2024

### What this paper is about



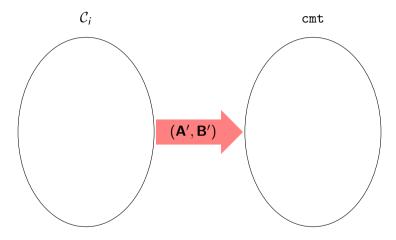

### Matrix code equivalence (MCE)


#### Definition

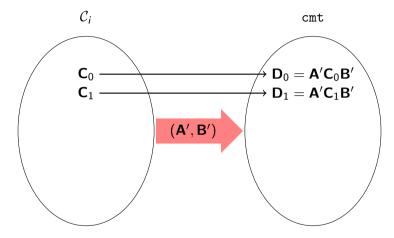

Given dimension-k linear codes  $C_0, C_1$ , where code words are considered as matrices in  $\mathbb{F}_q^{m \times n}$ . MCE asks to find  $\mathbf{A} \in \mathbb{F}_q^{m \times m}, \mathbf{B} \in \mathbb{F}_q^{n \times n}$ , such that  $C_1 = \mathbf{A} \cdot C_0 \cdot \mathbf{B}$ .

- The map induced by (A, B) is called an isometry between the codes.
- The first version of specification shows parameter sets with m = n = k.

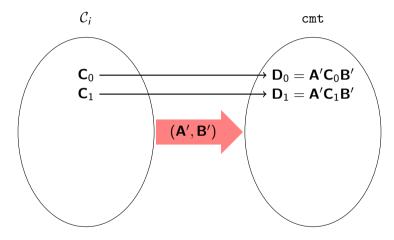
 $\mathcal{C}_0$ (pk)





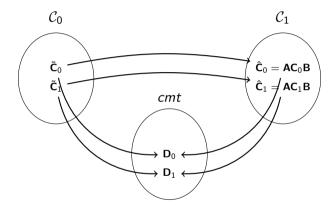




- Verification: apply rsp to  $C_{ch}$ , compare with cmt.
- FS transform is applied to obtain the MEDS signature scheme.
- rsp takes  $m^2 + n^2$  field elements to represent.

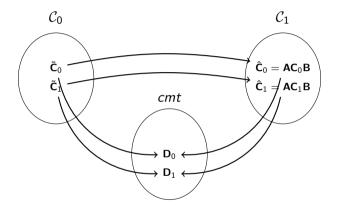

### Main idea for MEDS



### Main idea for MEDS




### Main idea for MEDS




• What if we represent (**A**', **B**') as (**C**<sub>0</sub>, **C**<sub>1</sub>, **D**<sub>0</sub>, **D**<sub>1</sub>)?

New  $\Sigma$ -protocol for MEDS ( $|m - n| \leq 1$ )



New  $\Sigma$ -protocol for MEDS ( $|m - n| \leq 1$ )



- (**C**<sub>0</sub>, **C**<sub>1</sub>) takes 2k coordinates to represent.
- (**D**<sub>0</sub>, **D**<sub>1</sub>) can be considered as public data.

# Solving for $\boldsymbol{\tilde{A}}, \boldsymbol{\tilde{B}}$

• Want to find **A**, **B** such that

$$\mathbf{D}_0 = \mathbf{A} \cdot \mathbf{C}_0 \cdot \mathbf{B}$$
$$\mathbf{D}_1 = \mathbf{A} \cdot \mathbf{C}_1 \cdot \mathbf{B}.$$

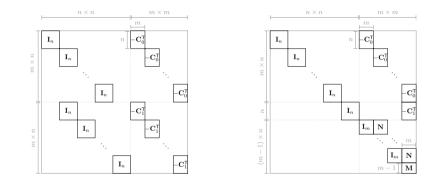
• We solve the linear system  $(m^2 + n^2 \text{ variables}, 2mn \text{ equations.})$  resulted from

 $\begin{aligned} \mathbf{D}_0 \cdot \mathbf{B}^{-1} = & \mathbf{A} \cdot \mathbf{C}_0 \\ & \mathbf{D}_1 \cdot \mathbf{B}^{-1} = & \mathbf{A} \cdot \mathbf{C}_1. \end{aligned}$ 

# Solving for $\boldsymbol{\tilde{A}}, \boldsymbol{\tilde{B}}$

• Want to find **A**, **B** such that

$$\mathbf{D}_0 = \mathbf{A} \cdot \mathbf{C}_0 \cdot \mathbf{B}$$
$$\mathbf{D}_1 = \mathbf{A} \cdot \mathbf{C}_1 \cdot \mathbf{B}.$$


• We solve the linear system  $(m^2 + n^2 \text{ variables}, 2mn \text{ equations.})$  resulted from

 $\mathbf{D}_0 \cdot \mathbf{B}^{-1} = \mathbf{A} \cdot \mathbf{C}_0$  $\mathbf{D}_1 \cdot \mathbf{B}^{-1} = \mathbf{A} \cdot \mathbf{C}_1.$ 

- When m = n, #eq = #var, leading to  $\mathbf{A} = \mathbf{B}^{-1} = 0$ .
- When |m n| = 1, #var #eq = 1, leading to solutions  $(\alpha \mathbf{A}, \alpha^{-1}\mathbf{B})$ .
- Otherwise, #var #eq > 1, leading to too many degrees of freedom.

## A specific choice for $\boldsymbol{\mathsf{D}}_0, \boldsymbol{\mathsf{D}}_1$

• Let's try n = m + 1 and  $\mathbf{D}_0 = (\mathbf{I}_m \ 0) \in \mathbb{F}_q^{m imes n}$ ,  $\mathbf{D}_1 = (0 \ \mathbf{I}_m) \in \mathbb{F}_q^{m imes n}$ .



- Reducing the system boils down to reducing **M**, which takes  $O(n^3)$  field operations.
- Reducing the generator matrix of cmt takes  $O(n^4)$  field operations.

### Old and new parameter sets for MEDS

| category   | q    | п  | т  | k  | 5 | t    | w   | pk      | sig     |
|------------|------|----|----|----|---|------|-----|---------|---------|
|            |      |    |    |    |   |      |     | (bytes) | (bytes) |
| <          | 4093 | 14 | 14 | 14 | 4 | 1152 | 14  | 9923    | 9896    |
| $\geq$ I   |      | 26 | 25 | 25 | 2 | 144  | 48  | 21595   | 5200    |
| < 111      | 4093 | 22 | 22 | 22 | 4 | 608  | 26  | 41711   | 41080   |
| $\geq$ III |      | 35 | 34 | 34 | 2 | 208  | 75  | 55520   | 10906   |
| < V        | 2039 | 30 | 30 | 30 | 5 | 192  | 52  | 134180  | 132528  |
| $\geq$ V   | 4093 | 45 | 44 | 44 | 2 | 272  | 103 | 122000  | 19068   |

• The attack from Eurocrypt 2024 is considered.

### Application to ALTEQ

| catogony | <b>"</b> | 0        | C   | r  | K  | pk      | sig     |
|----------|----------|----------|-----|----|----|---------|---------|
| category | n        | $\alpha$ | C   |    |    | (bytes) | (bytes) |
| 1        | 13       |          | 458 | 16 | 14 | 523968  | 9528    |
| I        | 13       | 6        | 657 | 29 | 11 | 512476  | 3752    |
| - 111    | 20       |          | 229 | 39 | 20 | 1044264 | 32504   |
| 111      | 20       | 7        | 297 | 69 | 17 | 1045464 | 10816   |
| V        | 25       |          | 227 | 67 | 25 | 2088432 | 63908   |
| V        | 25       | 8        | 276 | 88 | 23 | 2070032 | 20544   |

- For MEDS, isometries are represented as code words.
- For ALTEQ, isometries are represented as **partial** code words.

# https://ia.cr/2024/495