An Improved Practical Key Mismatch Attack Against NTRU

Zhen Liu, Vishakha FNU, Jintai Ding, Chi Cheng and Yanbin Pan

PQCrypto 2024, University of Oxford

NTRU

- ▶ Introduced by Hoffstein, Pipher and Silverman in 1996.
- ► A lattice-based public key encryption scheme.
- ► Standardized by IEEE 1363.1-2008.
- ► Commercialized: Security Innovation.
- No provable security

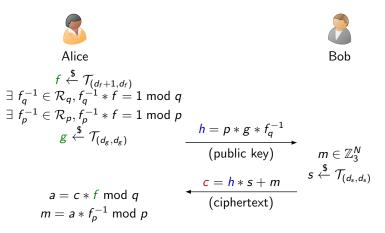
NTRU – KMAs before

- In 2000, Hoffstein, Pipher and Silverman firstly proposed a reaction attack against the original NTRU reling on a strong assumption that the upper (lower) wrapping failure only occurs at one coefficient.
- In 2003, Howgrave et al. successfully gave a reaction attack against the padded NTRUs, a infeasible large number of queries to the oracle.
- In 2019, Ding et al. proposed a key mismatch attack on the original NTRU scheme with a linear number of queries.
- In 2021, Zhang et al. successfully mounted a key mismatch attack against NTRU-HRSS based on searching for the optimum binary recovery tree, which has the minimum number of queries.

NTRU cryptosystem

Public Parameter: (N, p, q, d_f, d_g, d_s) , $\mathcal{R} = \frac{\mathbb{Z}[X]}{X^N - 1}$ and gcd(p, q) = 1

 $\mathcal{T}_{(d_1,d_2)} = \big\{ \text{trinary polynomials of } \mathcal{R} \text{ with } d_1 \text{ entries equal to } 1 \text{ and } d_2 \text{ entries equal to } -1 \big\}$



Why it works?

I

$$a = c * f \mod q$$

= $p * g * s + m * f \mod q$
If every coefficient of $p * g * s + m * f$ lies in $[-q/2, q/2)$, then

$$a = p * g * s + m * f$$

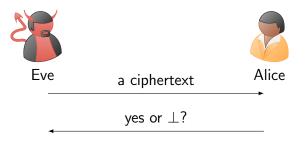
$$a * f_p^{-1} = m * f * f_p^{-1} \mod p$$
$$= m$$

▶ $x^i * f$ is an equivalent private key, for $0 \le i \le N - 1$.

Key Mismatch Attack

Basic Scenario

The attacker in a Key Mismatch Attack has access to a **weaken decryption oracle**, which only tells the ciphertext can be decrypted correctly or not.

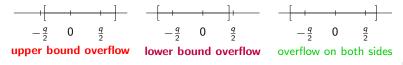


Decryption failure

For a ciphertext c that can be decrypted correctly, construct ciphertexts c_i = c + n * p * xⁱ, 0 ≤ i ≤ N − 1, n is a positive integer, we have

$$c_i * f = c * f + n * p * x^i * f \mod q$$
$$= a + n * p * x^i * f \mod q$$

- If every coefficient of $a+n*p*x^i*f$ lies in [-q/2, q/2), then $(c_i*f \mod q)*f_p^{-1} \mod p = a*f_p^{-1} \mod p = m$.
- Otherwise we say c_i causes a decryption failure, and define



Hoffstein et al.'s attack ¹

- Find the smallest *n* that there exists a $c_i = c + n * p * x^i$ that causes a decryption failure, for some $0 \le i \le N 1$.
- Assume that only the u-th position of a + n * p * xⁱ * f exceeds the upper bound q/2, for some i and u is unknown, then the u-th position of xⁱ * f is equal to 1.

N = 3:

$$a = (a_0, a_1, a_2)$$

$$n * p * f = (n * p * f_0, n * p * f_1, n * p * f_2)$$

$$n * p * x * f = (n * p * f_2, n * p * f_0, n * p * f_1)$$

$$n * p * x^2 * f = (n * p * f_1, n * p * f_2, n * p * f_0)$$

By recording the values of *i*, the attacker can recover a shifted version of the positions of 1 in *f*.

 $^{^1 \}rm Hoffstein,$ J., Silverman, J.H.: Reaction attacks against the ntru public key cryptosystem (2000), https://ntru.org/f/tr/tr015v2.pdf

Hoffstein et al.'s attack

a special case of upper bound overflow	a special case of lower bound overflow	overflow on both sides
assume only one	assume only one	
coefficient of c_i causes	coefficient of c_i causes	×
decryption failure,	decryption failure,	
recover a shifted version	recover a shifted version	
of the positions of 1 in f	of the positions of -1 in f	

table: the results of Hoffstein et al.'s attack

How to detect the type of a decryption failure?

Motivation

- ► add the disturbed polynomials n*p*xⁱ to c ⇒ the discontinuous position of f.
- ► add other disturbed polynomials △ to c ⇒ a consecutive coefficient sequence of f ?
 - a consecutive coefficient sequence of length k of f:

$$f_{i \mod N}, f_{(i+1) \mod N}, \cdots, f_{(i+k-1) \mod N}$$

e.g.,
$$k = N$$
 and $i = N - 1$, $f_{N-1}, f_0, \dots, f_{N-2} \Leftrightarrow x * f(x)$
 $k = N$ and $i = N - 2$, $f_{N-2}, f_{N-1}, \dots, f_{N-3} \Leftrightarrow x^2 * f(x)$
 $(\boldsymbol{c} + \Delta) * \boldsymbol{f} \Rightarrow \boldsymbol{a} + \Delta * \boldsymbol{f}$

• How to construct \triangle ?

Observation

For a polynomial
$$t \in \mathcal{R}$$
, $t * f = (t_0, t_1, \cdots, t_{N-1}) \begin{pmatrix} f_0 & f_1 & \cdots & f_{N-1} \\ f_{N-1} & f_0 & \cdots & f_{N-2} \\ \vdots & \vdots & & \vdots \\ f_2 & f_3 & \cdots & f_1 \\ f_1 & f_2 & \cdots & f_0 \end{pmatrix}$,

for $0 \le i \le N - 1$, the i-th coefficient of $\boldsymbol{t} * \boldsymbol{f}$ is

$$t_{N-1} \cdot f_{i \mod N} + t_{N-2} \cdot f_{(i+1) \mod N} + \cdots + t_0 \cdot f_{(i+N-1) \mod N}.$$

The i-th coefficient of t * f is determined by two consecutive coefficient sequences

$$t_{N-1}, t_{N-2}, \cdots, t_0$$

and

$$f_{i \mod N}, f_{(i+1) \mod N}, \cdots, f_{(i+N-1) \mod N}$$

Some Notations

• c: a ciphertext that can be decrypted correctly.

$$a = c * f \mod q.$$

▶ n: the smallest positive integer that there exists a c_i = c + n * p * xⁱ that causes a decryption failure, for some 0 ≤ i ≤ N − 1.

$$c_i * f = a + n * p * x^i * f \mod q$$

• $c'_i = c + p * x^i * t$, where $\sum_{j=0}^{N-1} |t_j| = n, 0 \le i \le N-1$. $c'_i * f = a + p * x^i * t * f \mod q$

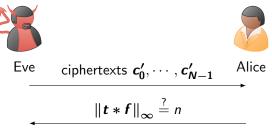
• decrypted correctly: $(c'_i * f \mod q) * f_p^{-1} \mod p = (a + p * x^i * t * f) * f_p^{-1} \mod p = m.$

Key Result

Lemma

For a polynomial t satisfying $\sum_{j=0}^{N-1} |t_j| = n$, if there exists a c'_i that causes a decryption failure, for $0 \le i \le N-1$, then $||t * f||_{\infty} = n$.

- upper bound overflow: the maximal coefficient of t * f is n.
- lower bound overflow: the minimal coefficient of t * f is -n.
- overflow on both sides: $\|\boldsymbol{t} * \boldsymbol{f}\|_{\infty} = n$.



The framework of our attack

- **1** Choose a ciphertext *c* that can be decrypted correctly.
- **Q** Find the smallest *n* that there exists a $c_i = c + n * p * x^i$ that causes a decryption failure, for some $0 \le i \le N 1$.
- **3** Construct different t with $\sum_{j=0}^{N-1} |t_j| = n$, and use $c'_i = c + p * t * x^i$ to recover consecutive sequence l_1, l_2, \dots, l_M in f one position at a time.
- **3** Select a subsequence I_m, \dots, I_M to continue recovery and obtain a newly consecutive sequence $I_m, \dots, I_M, \dots, I_{M_1}$.
- **6 Recover** the whole f by repeating this process.

$$I_1, I_2, \cdots, I_m, \cdots, I_M, \cdots, I_{M_1}, \cdots$$

Recover the next position

Input: l_1, \dots, l_{k+1} with $k \ge 0$

Output: l_{k+2}

- **1** set $t = (0, \dots, 0, n \sum_{j=0}^{k} |l_{1+j}|, l_{k+1}, \dots, l_2, l_1);$
- **2** If there exits a $c'_i = c + p * t * x^i$ that causes a decryption failure, return $l_{k+2} = 1$;
- **3** Else set $t = (0, \dots, 0, -(n \sum_{j=0}^{k} |l_{1+j}|), l_{k+1}, \dots, l_2, l_1);$
- ④ If there exits a $c'_i = c + p * t * x^i$ that causes a decryption failure, return $l_{k+2} = -1$;

5 return $I_{k+2} = 0$.

Recover a consecutive sequence of length 2

Assume $l_1 = 1$ to determine the next coefficient l_2 :

- $1 \quad t = (0, 0, \cdots, 0, n |l_1|, l_1) \xrightarrow{\text{failure}} l_2 = 1$
- 2 $t = (0, 0, \cdots, 0, -(n |l_1|), l_1) \xrightarrow{\text{failure}} l_2 = -1$
- **③** The attacker will only set $l_2 = 0$ when neither of the two choices for *t* can cause decryption failure.
- overflow in the upper bound : the maximal coefficient of t * f is $n \Rightarrow l_1, l_2$ is in f.
- overflow in the lower bound : the minimum coefficient of t * f is $-n \Rightarrow l_1, l_2$ is in -f.
- overflow on both sides : The recovered sequence l_1, l_2 is in f or -f.

Recover a consecutive sequence of length 3

the recovered $l_1 = 1, l_2 = 0$ in the case of upper bound overflow:

1 $t = (0, 0, \dots, 0, n - |l_1| - |l_2|, l_2, l_1) \xrightarrow{\text{failure}} l_3 = 1$

Every coefficient of t * f has the form of

$$1 \cdot f_j + 0 \cdot f_{j+1} + (n-1) \cdot f_{j+2}.$$

- the maximal coefficient of t * f is n.
- failure $\Rightarrow f_j = 1, f_{j+1} \in \{\pm 1, 0\}, f_{j+2} = 1$, for some j.

•
$$f_{j+1} \neq 0 \Rightarrow l_2 \neq 0$$

•
$$f_j = 1, f_{j+1} = 0, f_{j+2} = 1 \Rightarrow l_1 = 1, l_2 = 0, l_3 = 1$$

2 $t = (0, 0, \dots, 0, -(n - |l_1| - |l_2|), l_2, l_1) \xrightarrow{\text{failure}} l_3 = -1$

3 Otherwise, $I_3 = 0$

The size of M

$$J_1, J_2, \cdots, J_m, \cdots, J_M, \cdots, J_{M_1}, \cdots$$

- When n ≥ (2d_f + 1), we have M = N, which means the recovered coefficient sequence l₁, · · · , l_M is in f or −f of length N.
- When n < (2d_f + 1), by the negative hypergeometric distribution, the expectation of M is n.(N+1)/(2d_f+2).

- binary search to find n:
 - **upper bound** on *n*: $\left\lceil \frac{q}{2p} \right\rceil$
 - monitor whether there exists a c_i that causes a decryption failure or not

$$\begin{bmatrix} 1 & 1 \\ 0 & \left\lceil \frac{q}{4p} \right\rceil & \left\lceil \frac{q}{2p} \right\rceil \end{bmatrix}$$

- a polynomial $t \rightarrow N$ ciphertexts $c'_i = c + p * t * x^i$.
- one coefficient $\rightarrow 2N$ ciphertexts in the worst case.
- **Complexity:** $O(N^2)$ in the worst case.

Special Case: c=0

$$c = \mathbf{0} \Rightarrow c_i * f = n * p * x^i * f \mod q \Rightarrow n = \lceil \frac{q}{2p} \rceil$$

- All c'_i = p * t * xⁱ cause decryption failures at the same time.
- For a polynomial t satisfying $\sum_{j=0}^{N-1} |t_j| = \lceil \frac{q}{2p} \rceil$, use c' = p * t to recover the consecutive coefficients one by one position until the number of nonzero elements reaches

$$\min\{\lceil \frac{q}{2p}\rceil, 2d_f+1\}.$$

Experimental Results

N	q	р	dg	E	Q	Success Rate	Running Time(second)
443	2048	3	143	739	742	100%	48.75
743	2048	3	247	1239	1238	100%	315.80
821	4096	3	255	1369	1387	100%	455.38

- **b** g is trinary, use c' = c + h * t = h * t to finish the recovery of g.
- ► Q: the corresponding number of queries in our attack:
 - one coefficient \Rightarrow 2 ciphertexts in the worst case.
 - $Q \approx 2N d_g$.
- E: the lower bound on the minimum average number of queries from Qin et al.'s work.
- When N = 443 and N = 821, we have M = N.
- When N = 743, M is about 515 in theory.

Summary

- The attack gets rid of the assumptions used in Hoffstein et al.'s attack.
- The attack in the special case has the number of queries to the KMO closest to the lower bound on the minimum average number of queries at Asiacrypt 2021.
- The attack can be applied to any valid ciphertext, making it difficult to be easily detected.

Thank you & Questions ?