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NTRU

I Introduced by Hoffstein, Pipher and Silverman in 1996.

I A lattice-based public key encryption scheme.

I Standardized by IEEE 1363.1-2008.

I Commercialized: Security Innovation.

I No provable security
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NTRU – KMAs before

I In 2000, Hoffstein, Pipher and Silverman firstly proposed a re-

action attack against the original NTRU reling on a strong

assumption that the upper (lower) wrapping failure only occurs

at one coefficient.

I In 2003, Howgrave et al. successfully gave a reaction attack

against the padded NTRUs, a infeasible large number of queries

to the oracle.

I In 2019, Ding et al. proposed a key mismatch attack on the

original NTRU scheme with a linear number of queries.

I In 2021, Zhang et al. successfully mounted a key mismatch

attack against NTRU-HRSS based on searching for the opti-

mum binary recovery tree, which has the minimum number of

queries. 3/23



NTRU cryptosystem

Public Parameter: (N, p, q, df , dg , ds), R = Z[X ]

XN−1
and gcd(p, q) = 1

T(d1,d2) =
{

trinary polynomials of R with d1 entries equal to 1 and d2 entries equal to −1
}

Alice Bob

f
$←− T(df +1,df )

∃ f −1
q ∈ Rq, f

−1
q ∗ f = 1 mod q

∃ f −1
p ∈ Rp, f

−1
p ∗ f = 1 mod p

g
$←− T(dg ,dg )

h = p ∗ g ∗ f −1
q

(public key) m ∈ ZN
3

s
$←− T(ds ,ds )c = h ∗ s + m

(ciphertext)
a = c ∗ f mod q

m = a ∗ f −1
p mod p
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Why it works?

I

a = c ∗ f mod q

= p ∗ g ∗ s + m ∗ f mod q

If every coefficient of p ∗ g ∗ s + m ∗ f lies in [−q/2, q/2),

then

a = p ∗ g ∗ s + m ∗ f
I

a ∗ f −1
p = m ∗ f ∗ f −1

p mod p

= m

I x i ∗ f is an equivalent private key, for 0 ≤ i ≤ N − 1.
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Key Mismatch Attack

Basic Scenario

The attacker in a Key Mismatch Attack has access to a weaken

decryption oracle, which only tells the ciphertext can be de-

crypted correctly or not.

Eve Alicea ciphertext

yes or ⊥?
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Decryption failure

I For a ciphertext c that can be decrypted correctly,

construct ciphertexts ci = c + n ∗ p ∗ x i , 0 ≤ i ≤ N − 1,

n is a positive integer, we have

ci ∗ f = c ∗ f + n ∗ p ∗ x i ∗ f mod q

= a + n ∗ p ∗ x i ∗ f mod q

I If every coefficient of a+n∗p∗x i ∗f lies in [−q/2, q/2),

then (ci ∗f mod q)∗f −1
p mod p = a∗f −1

p mod p = m.

I Otherwise we say ci causes a decryption failure, and define

0− q
2

q
2

upper bound overflow

0− q
2

q
2

lower bound overflow

0− q
2

q
2

overflow on both sides
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Hoffstein et al.’s attack 1

I Find the smallest n that there exists a ci = c + n ∗ p ∗ x i that

causes a decryption failure, for some 0 ≤ i ≤ N − 1.

I Assume that only the u-th position of a + n ∗ p ∗ x i ∗ f exceeds

the upper bound q/2, for some i and u is unknown, then the u-th

position of x i ∗ f is equal to 1.

N = 3:

a = ( a0 , a1 , a2 )

n ∗ p ∗ f = (n ∗ p ∗ f0, n ∗ p ∗ f1, n ∗ p ∗ f2)

n ∗ p ∗ x ∗ f = (n ∗ p ∗ f2, n ∗ p ∗ f0, n ∗ p ∗ f1)

n ∗ p ∗ x2 ∗ f = (n ∗ p ∗ f1, n ∗ p ∗ f2, n ∗ p ∗ f0)

I By recording the values of i , the attacker can recover a shifted version

of the positions of 1 in f .
1

Hoffstein, J., Silverman, J.H.: Reaction attacks against the ntru public key cryptosystem (2000), https:

//ntru.org/f/tr/tr015v2.pdf
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Hoffstein et al.’s attack

a special case of a special case of
overflow on both sides

upper bound overflow lower bound overflow

assume only one assume only one

×
coefficient of ci causes coefficient of ci causes

decryption failure, decryption failure,

recover a shifted version recover a shifted version

of the positions of 1 in f of the positions of −1 in f

table: the results of Hoffstein et al.’s attack

I How to detect the type of a decryption failure?
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Motivation

I add the disturbed polynomials n∗p∗x i to c ⇒ the discontinuous

position of f .

I add other disturbed polynomials 4 to c ⇒ a consecutive coef-

ficient sequence of f ?

• a consecutive coefficient sequence of length k of f :

fi mod N , f(i+1) mod N , · · · , f(i+k−1) mod N

e.g., k = N and i = N − 1, fN−1, f0, · · · , fN−2 ⇔ x ∗ f (x)

k = N and i = N − 2, fN−2, fN−1, · · · , fN−3 ⇔ x2 ∗ f (x)

• (c +4) ∗ f ⇒ a +4∗ f
• How to construct 4?
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Observation

For a polynomial t ∈ R, t ∗ f = (t0, t1, · · · , tN−1)



f0 f1 · · · fN−1

fN−1 f0 · · · fN−2

...
...

...

f2 f3 · · · f1

f1 f2 · · · f0


,

for 0 ≤ i ≤ N − 1, the i-th coefficient of t ∗ f is

tN−1 · fi mod N + tN−2 · f(i+1) mod N + · · ·+ t0 · f(i+N−1) mod N .

The i-th coefficient of t ∗ f is determined by two consecutive coefficient

sequences

tN−1, tN−2, · · · , t0

and

fi mod N , f(i+1) mod N , · · · , f(i+N−1) mod N
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Some Notations

I c : a ciphertext that can be decrypted correctly.

a = c ∗ f mod q.

I n: the smallest positive integer that there exists a ci =

c + n ∗ p ∗ x i that causes a decryption failure, for some 0 ≤
i ≤ N − 1.

ci ∗ f = a + n ∗ p ∗ x i ∗ f mod q

I c ′i = c + p ∗ x i ∗ t, where
∑N−1

j=0 |tj | = n, 0 ≤ i ≤ N − 1.

c ′i ∗ f = a + p ∗ x i ∗ t ∗ f mod q

• decrypted correctly: (c ′i ∗ f mod q) ∗ f −1
p mod p = (a + p ∗

x i ∗ t ∗ f ) ∗ f −1
p mod p = m.
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Key Result

Lemma

For a polynomial t satisfying
∑N−1

j=0 |tj | = n, if there exists a c ′i that

causes a decryption failure, for 0 ≤ i ≤ N − 1, then ‖t ∗ f ‖∞ = n.

I upper bound overflow: the maximal coefficient of t ∗ f is n.

I lower bound overflow: the minimal coefficient of t ∗ f is −n.

I overflow on both sides: ‖t ∗ f ‖∞ = n.

Eve Aliceciphertexts c ′0, · · · , c ′N−1

‖t ∗ f ‖∞
?
= n
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The framework of our attack

1 Choose a ciphertext c that can be decrypted correctly.

2 Find the smallest n that there exists a ci = c +n ∗p ∗x i that

causes a decryption failure, for some 0 ≤ i ≤ N − 1.

3 Construct different t with
∑N−1

j=0 |tj | = n, and use c ′i = c +

p∗t ∗x i to recover consecutive sequence l1, l2, · · · , lM in f one

position at a time.

4 Select a subsequence lm, · · · , lM to continue recovery and ob-

tain a newly consecutive sequence lm, · · · , lM , · · · , lM1 .

5 Recover the whole f by repeating this process.︷ ︸︸ ︷
l1, l2, · · · , lm, · · · , lM , · · · , lM1︸ ︷︷ ︸, · · ·
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Recover the next position

Input: l1, · · · , lk+1 with k ≥ 0

Output: lk+2

1 set t = (0, · · · , 0, n −
∑k

j=0 |l1+j |, lk+1, · · · , l2, l1);

2 If there exits a c ′i = c + p ∗ t ∗ x i that causes a decryption failure,

return lk+2 = 1;

3 Else set t = (0, · · · , 0,−(n −
∑k

j=0 |l1+j |), lk+1, · · · , l2, l1);

4 If there exits a c ′i = c + p ∗ t ∗ x i that causes a decryption failure,

return lk+2 = −1;

5 return lk+2 = 0.
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Recover a consecutive sequence of length 2

Assume l1 = 1 to determine the next coefficient l2:

1 t = (0, 0, · · · , 0, n − |l1|, l1)
failure−−−→ l2 = 1

2 t = (0, 0, · · · , 0,−(n − |l1|), l1)
failure−−−→ l2 = −1

3 The attacker will only set l2 = 0 when neither of the two choices

for t can cause decryption failure.

I overflow in the upper bound : the maximal coefficient of t ∗ f is n

⇒ l1, l2 is in f .

I overflow in the lower bound : the minimum coefficient of t ∗ f is

−n ⇒ l1, l2 is in −f .

I overflow on both sides : The recovered sequence l1, l2 is in f or −f .
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Recover a consecutive sequence of length 3

the recovered l1 = 1, l2 = 0 in the case of upper bound overflow:

1 t = (0, 0, · · · , 0, n − |l1| − |l2|, l2, l1)
failure−−−→ l3 = 1

• Every coefficient of t ∗ f has the form of

1 · fj + 0 · fj+1 + (n − 1) · fj+2.

• the maximal coefficient of t ∗ f is n.

• failure ⇒ fj = 1, fj+1 ∈ {±1, 0}, fj+2 = 1, for some j .

• fj+1 6= 0 ⇒ l2 6= 0

• fj = 1, fj+1 = 0, fj+2 = 1⇒ l1 = 1, l2 = 0, l3 = 1

2 t = (0, 0, · · · , 0,−(n − |l1| − |l2|), l2, l1)
failure−−−→ l3 = −1

3 Otherwise, l3 = 0

17/23



The size of M

︷ ︸︸ ︷
l1, l2, · · · , lm, · · · , lM , · · · , lM1︸ ︷︷ ︸, · · ·

I When n ≥ (2df + 1), we have M = N, which means the

recovered coefficient sequence l1, · · · , lM is in f or −f of length

N.

I When n < (2df + 1), by the negative hypergeometric distri-

bution, the expectation of M is n·(N+1)
2df +2 .
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I binary search to find n:

• upper bound on n: d q
2p e

• monitor whether there exists a ci that causes a decryption failure

or not

0 d q
4p e d q

2p e

I a polynomial t → N ciphertexts c ′i = c + p ∗ t ∗ x i .

I one coefficient → 2N ciphertexts in the worst case.

I Complexity: O(N2) in the worst case.
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Special Case: c=0

c = 0⇒ ci ∗ f = n ∗ p ∗ x i ∗ f mod q ⇒ n = d q
2p
e

I All c ′i = p ∗ t ∗ x i cause decryption failures at the same

time.

I For a polynomial t satisfying
∑N−1

j=0 |tj | = d q
2p
e, use c ′ =

p ∗ t to recover the consecutive coefficients one by one

position until the number of nonzero elements reaches

min{d q
2p
e, 2df + 1}.
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Experimental Results

N q p dg E Q Success Rate Running Time(second)

443 2048 3 143 739 742 100% 48.75

743 2048 3 247 1239 1238 100% 315.80

821 4096 3 255 1369 1387 100% 455.38

I g is trinary, use c ′ = c + h ∗ t = h ∗ t to finish the recovery of g .

I Q: the corresponding number of queries in our attack:

• one coefficient ⇒ 2 ciphertexts in the worst case.

• Q ≈ 2N − dg .

I E : the lower bound on the minimum average number of queries from

Qin et al.’s work.

I When N = 443 and N = 821, we have M = N.

I When N = 743, M is about 515 in theory.
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Summary

I The attack gets rid of the assumptions used in Hoffstein

et al.’s attack.

I The attack in the special case has the number of queries

to the KMO closest to the lower bound on the mini-

mum average number of queries at Asiacrypt 2021.

I The attack can be applied to any valid ciphertext, mak-

ing it difficult to be easily detected.
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Thank you & Questions ?
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