

Polynomial XL: A Variant of the XL Algorithm Using Macaulay Matrices over Polynomial Rings

<u>Hiroki Furue</u>¹, Momonari Kudo²

1. NTT Social Informatics Laboratories, Japan

2. Fukuoka Institute of Technology, Japan

2024/6/12

PQCrypto 2024

Our Contributions

MQ problem : solving quadratic system over finite fields

XL algorithm

- solving the MQ problem
- applying Gaussian elimination on coefficient matrices

Hybrid XL (h-XL) : an efficient variant of XL

Main Result

We proposed an efficient variant of Hybrid XL. (with matrices over polynomial rings)

Outline

- XL Algorithm
 Hybrid Approach
- Proposed Algorithm
- Conclusions

MQ Problem

Solving quadratic systems over \mathbb{F}_q

- (\mathbb{F}_q : the finite field with q elements)
- q : the number of elements of the finite field
- n : the number of variables
- m: the number of equations

MQ (Multivariate Quadratic equations) Problem

Given $\mathcal{F} = (f_1, \dots, f_m) \in \mathbb{F}_q[x_1, \dots, x_n]^m$ with deg $f_i = 2$,

find *one* solution $(a_1, ..., a_n) \in \mathbb{F}_q^n$ to $\mathcal{F}(x_1, ..., x_n) = \mathbf{0} \in \mathbb{F}_q^m$.

Cryptosystems based on the MQ problem (e.g., UOV) are candidates for **post-quantum cryptosystems** (PQC).

Macaulay Matrices

 $F \coloneqq (f_1, \dots, f_m)$: an ordered set of polynomials

 $T \coloneqq (t_1, \dots, t_n)$: an ordered set of monomials

 $coeff(f_i, t_j)$: the coefficient of t_j in f_i

Macaulay Matrices

$$Mac(F,T) \coloneqq \begin{pmatrix} coeff(f_1,t_1) & \cdots & coeff(f_1,t_n) \\ \vdots & \ddots & \vdots \\ coeff(f_m,t_1) & \cdots & coeff(f_m,t_n) \end{pmatrix}$$

(We generally use the lexicographic or graded lexicographic order for *T*)

(Ex) lexicographic order

$$x^{2}yz, x^{3}, xy^{3} (x > y > z) \implies x^{3} > x^{2}yz > xy^{3}$$

XL Algorithm

•
$$\mathcal{F} = (f_1, \dots, f_m) \in \mathbb{F}_q[x_1, \dots, x_n]^m$$
 with deg $f_i = 2$

• $D \in \mathbb{Z}_{\geq 2}$: a parameter for the degree of monomials

•
$$T_{\leq d} \coloneqq \left\{ x_1^{\alpha_1} \cdots x_n^{\alpha_n} \right| \sum_{i=1}^n \alpha_i \leq d \right\}$$

(We use a monomial order such that x_n^D , ..., x_n , 1 are listed last.)

• $I_{\leq d}$: the set of products of monomials with degree $\leq d-2$ and f_1, \ldots, f_m

$$I_{\leq d} \coloneqq \bigcup_{i=1}^{m} \{t \cdot f_i | t \in T_{\leq (d-2)}\}$$

(with any monomial order)

XL Algorithm

[Courtois et al., EUROCRYPT 2000]

- 1. **Multiply** : Generate $Mac(I_{\leq D}, T_{\leq D})$.
- 2. Linearize : Perform Gaussian elimination on $Mac(I_{\leq D}, T_{\leq D})$.

3. **Solve**: Solve the univariate equation obtained in step 2 and then find the values of the other variables.

X We have to choose *D* such that a univariate equation is found in step2.

[Yang et al., ICICS 2004] [Bettale et al., J. Math. Cryptol., 2009]

approach for using MQ solvers such as XL more efficiently

Given
$$f_i(x_1, ..., x_n)$$
 $(1 \le i \le m), k \in \{1, ..., n\}$

(1) Choose $a_1, ..., a_k \in \mathbb{F}_q$ randomly. (2) Solve $f_1(a_1, ..., a_k, x_{k+1}, ..., x_n) = \cdots$ $= f_m(a_1, ..., a_k, x_{k+1}, ..., x_n) = 0$ for $x_{k+1}, ..., x_n$. Repeat (1, 2) until we find a solution. $O(q^k)$ times iteration

h-XL : hybrid approach with XL

Outline

- XL Algorithm · Hybrid Approach
- Proposed Algorithm
- Conclusions

Main Idea

The amount of operations required for each guessed value can be reduced.

Main Idea

 $(x_1, \dots, x_k: variables to be fixed)$

$$\mathbb{F}_q[x_1,\ldots,x_n] \to \big(\mathbb{F}_q[x_1,\ldots,x_k]\big)[x_{k+1},\ldots,x_n]$$

Ex)
$$q = 7 (\mathbb{F}_7), n = 3, m = 3, k = 1$$

 $f_1 = 5x^2 + 6xy + 4xz + yz + 5z^2 + 4x + 5y + 3$
 $f_2 = 4x^2 + 5xy + 4xz + 3y^2 + 5yz + z^2 + 6x + 2y + 3z + 2$
 $f_3 = 2x^2 + 4xy + 2y^2 + 6z^2 + 6x + y + 3z + 2$
 $f_1 = yz + 5z^2 + (6x + 5)y + 4xz + (5x^2 + 4x + 3)$
 $f_2 = 3y^2 + 5yz + z^2 + (5x + 2)y + (4x + 3)z + (4x^2 + 6x + 2)$
 $f_3 = 2y^2 + 6z^2 + (4x + 1)y + 3z + (2x^2 + 6x + 2)$

<u>Generate Macaulay matrices</u> \bigotimes with the graded lex order y > z

Main Idea

	<i>y</i> ⁴	y^3z	$y^2 z^2$	yz ³	<i>z</i> ⁴	<i>y</i> ³	y^2z	yz ²	z^3	y^2		yz	z^2	у	z	1	
$y^2 f_1$		1	5			6 <i>x</i> + 5	4 <i>x</i>			$5x^2 + 4x +$	3						
$y^2 f_2$	3	5	1			5 <i>x</i> + 2	4 <i>x</i> + 3			$4x^2 + 6x +$	2						
$y^2 f_3$	2		6			4 <i>x</i> + 1	3			2 <i>x</i> ²		connot n	orform th		an alimir	ation	
yzf ₁			1	5			6 <i>x</i> + 5	4 <i>x</i>			over the polynomial ring.						
yzf_2		3	5	1			5 <i>x</i> + 2	4 <i>x</i> + 3		0							
yzf ₃		2		6			4x + 1	3				$2x^2 + 6x + 2$					
$z^2 f_1$				1	5			6 <i>x</i> + 5	4 <i>x</i>				$5x^2 + 4x + 3$				
$z^2 f_2$			3	5	1			5 <i>x</i> + 2	4 <i>x</i> + 3			Dorform	the elim	ination o	on submatricas		
$z^2 f_3$			2		6			4 <i>x</i> + 1	3			ever the finite field					
yf ₁							1	5		6 <i>x</i> + 5		over the finite field.					
yf ₂						3	5	1		5 <i>x</i> + 2		4x + 3		$4x^2 + 6x + 2$			
yf ₃						2		6		4x + 1		3		$2x^2 + 6x + 2$			
zf_1								1	5			6 <i>x</i> + 5	4x		$5x^2 + 4x + 3$		
$\mathbf{z}\mathbf{f}_2$							3	5	1			5x + 2	4x + 3		$4x^2 + 6x + 2$		
zf ₃							2		6			4x + 1	3		$2x^2 + 6x + 2$		
f_1												1	5	6x + 5	4 <i>x</i>	$5x^2 + 4x + 3$	
f_2										3		5	1	5 <i>x</i> + 2	4 <i>x</i> + 3	$4x^2 + 6x + 2$	
f_3										2			6	4x + 1	3	$2x^2 + 6x + 2$	

Preliminaries

Input
•
$$\mathcal{F} = (f_1, \dots, f_m) \in \mathbb{F}_q[x_1, \dots, x_n]^m$$
 with deg $f_i = 2$
• $D \in \mathbb{Z}_{\geq 2}, k \in \mathbb{Z}_{\geq 1}$: parameters

• x_1, \ldots, x_k : fixed variables

•
$$T_d \coloneqq \left\{ x_{k+1}^{\alpha_{k+1}} \cdots x_n^{\alpha_n} \right| \sum_{i=k+1}^n \alpha_i = d \right\}$$

$$\cdot T_{\leq d} \coloneqq T_0 \cup \cdots \cup T_d$$

•
$$I_d \coloneqq \{t \cdot f_i | 1 \le i \le m \text{ and } t \in T_{d-2}\}$$

$$\cdot I_{\leq d} \coloneqq I_2 \cup \cdots \cup I_d$$

Preliminaries

- \mathcal{PM} : Mac($I_{\leq D}, T_{\leq D}$) over $\mathbb{F}_q[x_1, ..., x_k]$ (graded lex order)
- $\mathcal{PM}[I_a, T_b]$: the submatrix of \mathcal{PM} corresponding to I_a, T_b

	y^4	y^3z	$y^2 z^2$	yz ³	z ⁴	y ³	y^2z	yz ²	z^3	y ²	yz	z^2	у	z	1
$y^2 f_1$		1	5			6 <i>x</i> + 5	4 <i>x</i>			$5x^2 + 4x + 3$					
$y^2 f_2$	3	5	1			5 <i>x</i> + 2	4 <i>x</i> + 3			$4x^2 + 6x + 2$					
$y^2 f_3$	2		6			4x + 1	3			$2x^2 + 6x + 2$					
yzf ₁	l		1	5			6 <i>x</i> + 5	4 <i>x</i>			$5x^2 + 4x + 3$				
yzf ₂		РМ	$\Gamma[I_4]$, T ₄]		Р <i>М</i> []	I_4, T_3		J	$\mathcal{PM}[I_4, T_2]$	2]	$\mathcal{PM}[I_4,$	T_1] \mathcal{P}_{\cdot}	$\mathcal{M}[I_4, T_0]$
yzf_3	J	2		6			4 <i>x</i> + 1	3			$2x^{2} + 6x + 2$				
$z^2 f_1$				1	5			6 <i>x</i> + 5	4 <i>x</i>			$5x^2 + 4x + 3$			
$z^2 f_2$			3	5	1			5 <i>x</i> + 2	4 <i>x</i> + 3			$4x^2 + 6x + 2$			
$z^2 f_3$			2		6			4 <i>x</i> + 1	3			$2x^2 + 6x + 2$			
yf ₁							1	5		6x + 5	4 <i>x</i>		$5x^2 + 4x + 3$		
yf_2						3	5	1		5x + 2	4x + 3		$4x^2 + 6x + 2$		
<i>yf</i> ₃		י መእ	r[]			2	ן שטער		1	4x+1	ד ו]ארס	1	<i></i>	$T \rightarrow D$	יייי אר[<i>ו</i> ד]
zf_1	Ľ	J ^e Jv	ι [<i>Ι</i>]	, 14	.]		JU	1 ₃ , 1 ₃	<u>,</u>	J	⁻ JM [1 ₃ , 1 ₂	2 4 <i>x</i>	Γ <i>Μ</i> [1 ₃ ,	$I_1 \downarrow_{ix} J$	<i>[</i> [13, 10]
zf_2							3	5	1		5x + 2	4x + 3		$4x^2 + 6x + 2$	
zf ₃							2		6		4x + 1	3		$2x^2 + 6x + 2$	
f_1									J		1	5	6 <i>x</i> + 5	4 <i>x</i>	$5x^2 + 4x + 3$
f_2		$\mathcal{P}\mathcal{N}$	ſ[I ₂	, T ₄]		$\mathcal{PM} $	$[I_2, T_3]$]	з Ј	$\mathcal{PM}[I_2, T_2]$	2] 1	$\mathcal{PM}[I_2,$	T_1] $\stackrel{\scriptstyle \scriptstyle \leftarrow}{=} \mathcal{P}.$	$\mathcal{M}[I_2, T_0]$
<i>f</i> ₃										2		6	4x + 1	3	$2x^2 + 6x + 2$

Polynomial XL (PXL)

1. **Multiply** : Generate \mathcal{PM} .

2. Linearize(1):

(partial Gaussian elimination)

- **3.** Fix : Fix the values of k variables.
- 4. Linearize(2) : Perform Gaussian elimination on the matrix obtained in step 3.
- 5. **Solve**: Solve the univariate equation obtained in step 4 and then find the values of the other variables.

impose of the matter of the m

Details of Linearize(1)

for *d* in [*D* ... 2] do

- **1** Perform elimination on $\mathcal{PM}[I_d, T_d]$
- 2 Apply the same row operations on $\mathcal{PM}[I_d, T_{d-1}]$ and $\mathcal{PM}[I_d, T_{d-2}]$

Row operations on $\mathcal{PM}[I_d, \sim]$

3 Using the leading coefficients of $\mathcal{PM}[I_d, T_d]$,

eliminate corresponding columns.

Comparison

We asymptotically evaluate the time complexity by the formula.

(We experimentally confirmed that the proposed algorithm behaves as our complexity estimation.)

• $q = 2^8$, m = n (the estimation of the number of operations over \mathbb{F}_q)

n	20	40	60	80	
h-XL	2 ⁷⁵	2 ¹³⁴	2 ¹⁹⁴	2 ²⁵²	210 ~ 220 times
h-WXL	2 ⁷⁵	2 ¹²⁹	2 ¹⁸²	2 ²³⁴	2 2 times
Crossbred	2 ⁶⁵	2 ¹²³	2^{180}	2 ²³⁷	
PXL	2 ⁶²	2 ¹¹⁷	2 ¹⁶⁹	2 ²²⁰	

WXL: a variant of XL using the sparsity of Macaulay matrices [Yang et al., FSE 2007] h-WXL: hybrid approach with WXL

Crossbred: an XL variant with similar construction as PXL [Joux, Vitse, NuTMiC 2017]

Outline

- XL Algorithm · Hybrid Approach
- Proposed Algorithm
- Conclusions

Conclusions and Future Works

Conclusions

- We proposed a new variant of h-XL.
- The proposed algorithm is asymptotically more efficient than other algorithms in the case of $n \approx m$.

Future Works

- generalizing the proposed algorithm to higher degree cases
- proposing fast implementation
 - + analysis of practical efficiency