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Factoring and discrete logarithm problems

Integer Factoring Problem (IFP)

▶ Given an integer N, find non-trivial
factors p, q such that N = pq.

Discrete Logarithm Problem (DLP)

▶ Given a generator g of a cyclic
group and x = ge, find e.

▶ Historically the basis for virtually all widely deployed asymmetric cryptography.
▶ Algorithms that solve the IFP can often be adapted to solve the DLP, and vice versa.

▶ In this presentation, we consider the DLP in cyclic subgroups of Z∗
N.



Quantum algorithms for the IFP and DLP

Algorithm Problem #Multiplications #Runs Space usage
[Shor94] IFP O(n) O(1) O(n)
[Shor94] DLP O(n) O(1) O(n)

▶ The circuit size is given by the number of multiplications modulo n-bit integers N.

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
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The quantum circuit
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▶ The circuits for all of the aforementioned algorithms follow the same design pattern.



The quantum circuit
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▶ By letting the aj be small integers, and re-arranging the order of the multiplications,
[Regev23] is able to reduce the circuit size at the expense of using more space.

https://doi.org/10.48550/arXiv.2308.06572


Shor’s factoring algorithm— one-dimensional period finding
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Example: f(z) = 73z mod 667

▶ Factors by finding the period of f(z) = a z mod N for random a.



Regev’s factoring algorithm— d-dimensional period finding

▶ Considers the function

f(z1, . . . , zd) =
d∏

j= 1

azjj mod N,

the period of which forms a lattice

L = {(z1, . . . , zd) | f(z1, . . . , zd) = 1} .

▶ Under a heuristic assumption, it suffices
to perform ≈ d runs to factor N. 0
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Our extension to computing discrete logarithms

The quantum algorithm

▶ Each runs of the quantum algorithm gives information on the periodicity of

f(z1, . . . , zd+2) = x zd+1g zd+2
d∏

j= 1

azjj mod N

where x = ge mod N and the aj are small integers.

▶ Essentially the same algorithm as in [Regev23] but g and x need not be small.

https://doi.org/10.48550/arXiv.2308.06572


Our extension to computing discrete logarithms

The classical post-processing

▶ Given the outputs from O(d) runs, the post-processing recovers vectors in the lattice

L =

(z1, . . . , zd+2)

∣∣∣∣∣ x zd+1g zd+2
d∏

j= 1

azjj mod N = 1

 .

▶ Under a new heuristic assumption, the vectors recovered yield a basis for L.

▶ Given a basis for L, we can easily recover e by finding the vector

(0, . . . ,0, 1,−e) ∈ L.



Our new heuristic assumption

▶ Our new assumption is stronger than the assumption made in [Regev23].

▶ Both assumptions are essentially that small primes behave as random elements in Z∗
N.

▶ [Pilatte24] recently proved a variant of our assumption with worse parameters.

https://doi.org/10.48550/arXiv.2308.06572
https://ia.cr/2024/629


Other extensions

More efficient factoring

▶ Under our new heuristic assumption, we can recover a basis for the lattice

L =

(z1, . . . , zd)

∣∣∣∣∣
d∏

j= 1

azjj mod N = 1

 .

Given a basis for L with the aj small primes, we can efficiently factor N completely.

▶ In [Regev23], the aj must be squares. In our algorithm, we can avoid the squaring.

▶ Thus, we can use aj of half the bit length, which improves the efficiency.

https://doi.org/10.48550/arXiv.2308.06572
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On the need for robustness

▶ Quantum computers as currently envisaged may fail to correctly execute the circuit.

▶ [Regev23] requires Θ(
√
n) good runs, so only a tiny failure probability is acceptable.

https://doi.org/10.48550/arXiv.2308.06572


Two approaches to robustness

Our work

▶ The post-processing succeeds
even if some runs are bad.

Ragavan and Vaikuntanathan

▶ [RV23] develops a method
 to filter out bad runs.

https://doi.org/10.48550/arXiv.2310.00899


Further details on the two approaches

Our work [RV23]
Requirements New heuristic assumption. Special property for distribution

of outputs from bad runs.
Efficiency Somewhat larger parameters. Significantly larger parameters.
Error tolerance Arbitrary constant percentage. Constant percentage.

▶ Natural that we achieve better efficiency since we rely on a heuristic analysis.

https://doi.org/10.48550/arXiv.2310.00899


Quantifying the robustness through simulations
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Overall

▶ [EG24sim] samples the distribution induced by the quantum algorithm.
▶ Motivates our new assumption and allows us to estimate parameter requirements.

▶ Simulator only efficient for classically tractable special-form problem instances.

https://github.com/ekera/regevnum
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Regev with space savings vs. existing variations of Shor
From our recent cost comparison [EG24] (arXiv:2405.14381)

Per-run advantage of existing variations of Shor
Problem size

Algorithm Problem 2048 3072 4096 6144 8192
[EH17, E20] RSA IFP 3.16 2.46 2.04 1.58 1.33

[E19] General DLP 1.71 1.31 1.08 0.83 0.69
[EH17, E20] Short DLP 12.6 13.1 12.1 12.2 12.1

[E19] Schnorr DLP 13.6 14.0 13.1 13.1 13.0

The advantage, defined as (cost of Regev) / (cost of Shor), in a cost model biased in favor of Regev.

▶ Performance for cryptographically relevant problem instances is of key interest.

https://doi.org/10.48550/arXiv.2405.14381
https://doi.org/10.48550/arXiv.2405.14381
https://doi.org/10.1007/978-3-319-59879-6_20
https://doi.org/10.1007/s10623-020-00783-2
https://doi.org/10.48550/arXiv.1905.09084
https://doi.org/10.1007/978-3-319-59879-6_20
https://doi.org/10.1007/s10623-020-00783-2
https://doi.org/10.48550/arXiv.1905.09084


Conclusion

Open questions

▶ Optimize Regev’s algorithm to make it more competitive in practice.

▶ Provide optimizations for the special cases of short DLP and DLP in Schnorr groups.

▶ Extend the algorithm to the elliptic curve DLP.
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Summary of our contribution

▶ We have extended Regev’s factoring algorithm to compute discrete logarithms.

▶ We have provided slightly more efficient variants for factoring completely.

▶ We have analyzed and argued for the robustness of the post-processing.
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