Extending Regev's factoring algorithm to compute discrete logarithms

Martin Ekerå^{1,2} and <u>Joel Gärtner^{1,2}</u>

¹ KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
² Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden
PQCrypto 2024, Oxford, England, United Kingdom, 14 June, 2024

Factoring and discrete logarithm problems

Integer Factoring Problem (IFP)

Given an integer N, find non-trivial factors p, q such that N = pq.

Discrete Logarithm Problem (DLP)

- Given a generator g of a cyclic group and x = g^e, find e.
- ► Historically the basis for virtually all widely deployed asymmetric cryptography.
- Algorithms that solve the IFP can often be adapted to solve the DLP, and vice versa.
- ▶ In this presentation, we consider the DLP in cyclic subgroups of \mathbb{Z}_N^* .

Algorithm	Problem	#Multiplications	#Runs	Space usage
[Shor94]	IFP	0(n)	<i>O</i> (1)	0(n)
[Shor94]	DLP	0(n)	<i>O</i> (1)	<i>O</i> (<i>n</i>)

Algorithm	Problem	#Multiplications	#Runs	Space usage
[Shor94]	IFP	0(n)	<i>O</i> (1)	0(n)
[Shor94]	DLP	0(n)	<i>O</i> (1)	0(n)
[Regev23]	IFP	$O(\sqrt{n})$	0(√n)	0(n ^{3/2})

Algorithm	Problem	#Multiplications	#Runs	Space usage
[Shor94]	IFP	0(n)	<i>O</i> (1)	0(n)
[Shor94]	DLP	0(n)	<i>O</i> (1)	0(n)
[Regev23]	IFP	$O(\sqrt{n})$	$O(\sqrt{n})$	0(n ^{3/2})
[Regev23] with [RV23]	IFP	$O(\sqrt{n})$	$O(\sqrt{n})$	0(n)

Algorithm	Problem	#Multiplications	#Runs	Space usage
[Shor94]	IFP	0(n)	<i>O</i> (1)	0(n)
[Shor94]	DLP	0(n)	<i>O</i> (1)	0(n)
[Regev23]	IFP	$O(\sqrt{n})$	$O(\sqrt{n})$	$O(n^{3/2})$
[Regev23] with [RV23]	IFP	$O(\sqrt{n})$	$O(\sqrt{n})$	0(n)
Our work	DLP	$O(\sqrt{n})$	$O(\sqrt{n})$	0(n)

The quantum circuit

▶ The circuits for all of the aforementioned algorithms follow the same design pattern.

The quantum circuit

By letting the a_j be small integers, and re-arranging the order of the multiplications, [Regev23] is able to reduce the circuit size at the expense of using more space.

Shor's factoring algorithm — one-dimensional period finding

Example:
$$f(z) = 73^z \mod 667$$

Factors by finding the period of $f(z) = a^z \mod N$ for random *a*.

Regev's factoring algorithm — *d*-dimensional period finding

Considers the function

$$f(z_1,\ldots,z_d)=\prod_{j=1}^d a_j^{z_j} \bmod N,$$

the period of which forms a lattice

$$\mathcal{L} = \{(z_1, \ldots, z_d) \mid f(z_1, \ldots, z_d) = 1\}.$$

• Under a heuristic assumption, it suffices to perform $\approx d$ runs to factor *N*.

Contents

1. Background

2. Computing discrete logarithms

3. Robustness to errors

- 4. Cryptographic implications
- 5. Conclusion

Our extension to computing discrete logarithms

The quantum algorithm

Each runs of the quantum algorithm gives information on the periodicity of

$$f(z_1,...,z_{d+2}) = x^{z_{d+1}}g^{z_{d+2}}\prod_{j=1}^d a_j^{z_j} \mod N$$

where $x = g^e \mod N$ and the a_j are small integers.

Essentially the same algorithm as in [Regev23] but g and x need not be small.

Our extension to computing discrete logarithms

The classical post-processing

• Given the outputs from O(d) runs, the post-processing recovers vectors in the lattice

$$\mathcal{L} = \left\{ (z_1, \dots, z_{d+2}) \mid x^{z_{d+1}} g^{z_{d+2}} \prod_{j=1}^d a_j^{z_j} \mod N = 1 \right\}.$$

- ▶ Under a new heuristic assumption, the vectors recovered yield a basis for *L*.
- Given a basis for \mathcal{L} , we can easily recover *e* by finding the vector

 $(0,\ldots,0,1,-e)\in\mathcal{L}.$

Our new heuristic assumption

- Our new assumption is stronger than the assumption made in [Regev23].
- ▶ Both assumptions are essentially that small primes behave as random elements in \mathbb{Z}_N^* .
- ▶ [Pilatte24] recently proved a variant of our assumption with worse parameters.

Other extensions

More efficient factoring

Under our new heuristic assumption, we can recover a basis for the lattice

$$\mathcal{L} = \left\{ (z_1, \ldots, z_d) \mid \prod_{j=1}^d a_j^{z_j} \mod N = 1 \right\}.$$

Given a basis for \mathcal{L} with the a_i small primes, we can efficiently factor N completely.

- ▶ In [Regev23], the a_i must be squares. In our algorithm, we can avoid the squaring.
- Thus, we can use a_j of half the bit length, which improves the efficiency.

Contents

1. Background

2. Computing discrete logarithms

3. Robustness to errors

- 4. Cryptographic implications
- 5. Conclusion

On the need for robustness

- Quantum computers as currently envisaged may fail to correctly execute the circuit.
- ► [Regev23] requires $\Theta(\sqrt{n})$ good runs, so only a tiny failure probability is acceptable.

Two approaches to robustness

Our work

The post-processing succeeds even if some runs are bad. Ragavan and Vaikuntanathan

 [RV23] develops a method to filter out bad runs.

Further details on the two approaches

	Our work	[RV23]
Requirements	New heuristic assumption.	Special property for distribution
		of outputs from bad runs.
Efficiency	Somewhat larger parameters.	Significantly larger parameters.
Error tolerance	Arbitrary constant percentage.	Constant percentage.

▶ Natural that we achieve better efficiency since we rely on a heuristic analysis.

Quantifying the robustness through simulations

- ▶ [EG24sim] samples the distribution induced by the quantum algorithm.
- Motivates our new assumption and allows us to estimate parameter requirements.
 - Simulator only efficient for classically tractable special-form problem instances.

Contents

1. Background

- 2. Computing discrete logarithms
- 3. Robustness to errors
- 4. Cryptographic implications
- 5. Conclusion

Regev with space savings vs. existing variations of Shor

From our recent cost comparison [EG24] (arXiv:2405.14381)

Per-run advantage of existing variations of Shor						
		Problem size				
Algorithm	Problem	2048	3072	4096	6144	8192
[EH17, E20]	RSA IFP	3.16	2.46	2.04	1.58	1.33
[E19]	General DLP	1.71	1.31	1.08	0.83	0.69
[EH17, E20]	Short DLP	12.6	13.1	12.1	12.2	12.1
[E19]	Schnorr DLP	13.6	14.0	13.1	13.1	13.0

The advantage, defined as (cost of Regev) / (cost of Shor), in a cost model biased in favor of Regev.

Performance for cryptographically relevant problem instances is of key interest.

Conclusion

Open questions

- Optimize Regev's algorithm to make it more competitive in practice.
- ▶ Provide optimizations for the special cases of short DLP and DLP in Schnorr groups.
- Extend the algorithm to the elliptic curve DLP.

Conclusion

Open questions

- Optimize Regev's algorithm to make it more competitive in practice.
- Provide optimizations for the special cases of short DLP and DLP in Schnorr groups.
- Extend the algorithm to the elliptic curve DLP.

Summary of our contribution

- ▶ We have extended Regev's factoring algorithm to compute discrete logarithms.
- ► We have provided slightly more efficient variants for factoring completely.
- ▶ We have analyzed and argued for the robustness of the post-processing.

