
Extending Regev’s factoring algorithm
to compute discrete logarithms

Martin Ekerå 1,2 and Joel Gärtner 1,2

1 KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
2 Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden

PQCrypto 2024, Oxford, England, United Kingdom, 14 June, 2024

mailto:ekera@kth.se
mailto:jgartner@kth.se
https://www.kth.se/en
https://www.mil.se


Factoring and discrete logarithm problems

Integer Factoring Problem (IFP)

▶ Given an integer N, find non-trivial
factors p, q such that N = pq.

Discrete Logarithm Problem (DLP)

▶ Given a generator g of a cyclic
group and x = ge, find e.

▶ Historically the basis for virtually all widely deployed asymmetric cryptography.
▶ Algorithms that solve the IFP can often be adapted to solve the DLP, and vice versa.

▶ In this presentation, we consider the DLP in cyclic subgroups of Z∗
N.



Quantum algorithms for the IFP and DLP

Algorithm Problem #Multiplications #Runs Space usage
[Shor94] IFP O(n) O(1) O(n)
[Shor94] DLP O(n) O(1) O(n)

▶ The circuit size is given by the number of multiplications modulo n-bit integers N.

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700


Quantum algorithms for the IFP and DLP

Algorithm Problem #Multiplications #Runs Space usage
[Shor94] IFP O(n) O(1) O(n)
[Shor94] DLP O(n) O(1) O(n)
[Regev23] IFP O(

√
n) O(

√
n) O(n3/2)

▶ The circuit size is given by the number of multiplications modulo n-bit integers N.

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.48550/arXiv.2308.06572


Quantum algorithms for the IFP and DLP

Algorithm Problem #Multiplications #Runs Space usage
[Shor94] IFP O(n) O(1) O(n)
[Shor94] DLP O(n) O(1) O(n)
[Regev23] IFP O(

√
n) O(

√
n) O(n3/2)

[Regev23] with [RV23] IFP O(
√
n) O(

√
n) O(n)

▶ The circuit size is given by the number of multiplications modulo n-bit integers N.

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.48550/arXiv.2308.06572
https://doi.org/10.48550/arXiv.2308.06572
https://doi.org/10.48550/arXiv.2310.00899


Quantum algorithms for the IFP and DLP

Algorithm Problem #Multiplications #Runs Space usage
[Shor94] IFP O(n) O(1) O(n)
[Shor94] DLP O(n) O(1) O(n)
[Regev23] IFP O(

√
n) O(

√
n) O(n3/2)

[Regev23] with [RV23] IFP O(
√
n) O(

√
n) O(n)

Our work DLP O(
√
n) O(

√
n) O(n)

▶ The circuit size is given by the number of multiplications modulo n-bit integers N.

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.48550/arXiv.2308.06572
https://doi.org/10.48550/arXiv.2308.06572
https://doi.org/10.48550/arXiv.2310.00899


The quantum circuit

|0⟩ In
it

Q
FT

|0⟩ In
it

Q
FT

|0⟩ In
it

Q
FT

|0⟩ In
it

Q
FT

w1

w2

wj

wd

|1⟩

∣∣∣∣∣∣
d∏

j= 1

a
zj
j mod N

〉
az11 az22 a

zj
j azdd

▶ The circuits for all of the aforementioned algorithms follow the same design pattern.



The quantum circuit

|0⟩ · · ·In
it

Q
FT

|0⟩ · · ·In
it

Q
FT

|0⟩ · · ·In
it

Q
FT

|0⟩ · · ·In
it

Q
FT

w1

w2

wj

wd

|1⟩ · · ·

∣∣∣∣∣∣
d∏

j= 1

a
zj
j mod N

〉∏d
j=1 a

zj,d
j

Sq
ua
re ∏d

j=1 a
zj,d−1
j

Sq
ua
re ∏d

j=1 a
zj,1
j

C
le
an

up

▶ By letting the aj be small integers, and re-arranging the order of the multiplications,
[Regev23] is able to reduce the circuit size at the expense of using more space.

https://doi.org/10.48550/arXiv.2308.06572


Shor’s factoring algorithm— one-dimensional period finding

0 50 100 150 200

250 300 350 400

450 500 550 600 650

Example: f(z) = 73z mod 667

▶ Factors by finding the period of f(z) = a z mod N for random a.



Regev’s factoring algorithm— d-dimensional period finding

▶ Considers the function

f(z1, . . . , zd) =
d∏

j= 1

azjj mod N,

the period of which forms a lattice

L = {(z1, . . . , zd) | f(z1, . . . , zd) = 1} .

▶ Under a heuristic assumption, it suffices
to perform ≈ d runs to factor N. 0

0
20

20

40

40

Example: f(x, y) = 4x9y mod 667



Contents

1. Background

2. Computing discrete logarithms

3. Robustness to errors

4. Cryptographic implications

5. Conclusion



Our extension to computing discrete logarithms

The quantum algorithm

▶ Each runs of the quantum algorithm gives information on the periodicity of

f(z1, . . . , zd+2) = x zd+1g zd+2
d∏

j= 1

azjj mod N

where x = ge mod N and the aj are small integers.

▶ Essentially the same algorithm as in [Regev23] but g and x need not be small.

https://doi.org/10.48550/arXiv.2308.06572


Our extension to computing discrete logarithms

The classical post-processing

▶ Given the outputs from O(d) runs, the post-processing recovers vectors in the lattice

L =

(z1, . . . , zd+2)

∣∣∣∣∣ x zd+1g zd+2
d∏

j= 1

azjj mod N = 1

 .

▶ Under a new heuristic assumption, the vectors recovered yield a basis for L.

▶ Given a basis for L, we can easily recover e by finding the vector

(0, . . . ,0, 1,−e) ∈ L.



Our new heuristic assumption

▶ Our new assumption is stronger than the assumption made in [Regev23].

▶ Both assumptions are essentially that small primes behave as random elements in Z∗
N.

▶ [Pilatte24] recently proved a variant of our assumption with worse parameters.

https://doi.org/10.48550/arXiv.2308.06572
https://ia.cr/2024/629


Other extensions

More efficient factoring

▶ Under our new heuristic assumption, we can recover a basis for the lattice

L =

(z1, . . . , zd)

∣∣∣∣∣
d∏

j= 1

azjj mod N = 1

 .

Given a basis for L with the aj small primes, we can efficiently factor N completely.

▶ In [Regev23], the aj must be squares. In our algorithm, we can avoid the squaring.

▶ Thus, we can use aj of half the bit length, which improves the efficiency.

https://doi.org/10.48550/arXiv.2308.06572


Contents

1. Background

2. Computing discrete logarithms

3. Robustness to errors

4. Cryptographic implications

5. Conclusion



On the need for robustness

▶ Quantum computers as currently envisaged may fail to correctly execute the circuit.

▶ [Regev23] requires Θ(
√
n) good runs, so only a tiny failure probability is acceptable.

https://doi.org/10.48550/arXiv.2308.06572


Two approaches to robustness

Our work

▶ The post-processing succeeds
even if some runs are bad.

Ragavan and Vaikuntanathan

▶ [RV23] develops a method
 to filter out bad runs.

https://doi.org/10.48550/arXiv.2310.00899


Further details on the two approaches

Our work [RV23]
Requirements New heuristic assumption. Special property for distribution

of outputs from bad runs.
Efficiency Somewhat larger parameters. Significantly larger parameters.
Error tolerance Arbitrary constant percentage. Constant percentage.

▶ Natural that we achieve better efficiency since we rely on a heuristic analysis.

https://doi.org/10.48550/arXiv.2310.00899


Quantifying the robustness through simulations

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

Failure probability (%)

N
or
m
al
iz
ed

co
st

Per run

0 10 20 30 40 50 60 70 80
0
1
2
3
4
5
6
7
8
9

Failure probability (%)

N
or
m
al
iz
ed

co
st

Overall

▶ [EG24sim] samples the distribution induced by the quantum algorithm.
▶ Motivates our new assumption and allows us to estimate parameter requirements.

▶ Simulator only efficient for classically tractable special-form problem instances.

https://github.com/ekera/regevnum


Contents

1. Background

2. Computing discrete logarithms

3. Robustness to errors

4. Cryptographic implications

5. Conclusion



Regev with space savings vs. existing variations of Shor
From our recent cost comparison [EG24] (arXiv:2405.14381)

Per-run advantage of existing variations of Shor
Problem size

Algorithm Problem 2048 3072 4096 6144 8192
[EH17, E20] RSA IFP 3.16 2.46 2.04 1.58 1.33

[E19] General DLP 1.71 1.31 1.08 0.83 0.69
[EH17, E20] Short DLP 12.6 13.1 12.1 12.2 12.1

[E19] Schnorr DLP 13.6 14.0 13.1 13.1 13.0

The advantage, defined as (cost of Regev) / (cost of Shor), in a cost model biased in favor of Regev.

▶ Performance for cryptographically relevant problem instances is of key interest.

https://doi.org/10.48550/arXiv.2405.14381
https://doi.org/10.48550/arXiv.2405.14381
https://doi.org/10.1007/978-3-319-59879-6_20
https://doi.org/10.1007/s10623-020-00783-2
https://doi.org/10.48550/arXiv.1905.09084
https://doi.org/10.1007/978-3-319-59879-6_20
https://doi.org/10.1007/s10623-020-00783-2
https://doi.org/10.48550/arXiv.1905.09084


Conclusion

Open questions

▶ Optimize Regev’s algorithm to make it more competitive in practice.

▶ Provide optimizations for the special cases of short DLP and DLP in Schnorr groups.

▶ Extend the algorithm to the elliptic curve DLP.



Conclusion

Open questions

▶ Optimize Regev’s algorithm to make it more competitive in practice.

▶ Provide optimizations for the special cases of short DLP and DLP in Schnorr groups.

▶ Extend the algorithm to the elliptic curve DLP.

Summary of our contribution

▶ We have extended Regev’s factoring algorithm to compute discrete logarithms.

▶ We have provided slightly more efficient variants for factoring completely.

▶ We have analyzed and argued for the robustness of the post-processing.




	Background
	Computing discrete logarithms
	Robustness to errors
	Cryptographic implications
	Conclusion

