The higher-dimensional picture

And its role in isogeny-based cryptography

Sabrina Kunzweiler

June 13th, 2024

Inria Bordeaux, IMB, France

Candidate for post-quantum cryptography based on the hard problem of finding isogenies

Candidate for post-quantum cryptography based on the hard problem of finding isogenies

Candidate for post-quantum cryptography based on the hard problem of finding isogenies

Candidate for post-quantum cryptography based on the hard problem of finding isogenies

Candidate for post-quantum cryptography based on the hard problem of finding isogenies

 $E: y^2 = x^3 + ax + b,$

where $4a^3 + 27b^2 \neq 0$.

 $E: y^2 = x^3 + ax + b,$

where $4a^3 + 27b^2 \neq 0$.

Points of *E* form an additive group.

• Can compute P + Q for points $P, Q \in E(\mathbb{F}_{p^k})$.

 $E: y^2 = x^3 + ax + b,$

where $4a^3 + 27b^2 \neq 0$.

Points of *E* form an additive group.

• Can compute P + Q for points $P, Q \in E(\mathbb{F}_{p^k})$.

 $E: y^2 = x^3 + ax + b,$

where $4a^{3} + 27b^{2} \neq 0$.

Points of *E* form an additive group.

- Can compute P + Q for points $P, Q \in E(\mathbb{F}_{p^k})$.
- Can compute $m \cdot P$ for a point $P \in E(\mathbb{F}_{p^k})$ and $m \in \mathbb{Z}$.

 $E: y^2 = x^3 + ax + b,$

where $4a^3 + 27b^2 \neq 0$.

Points of *E* form an additive group.

- Can compute P + Q for points $P, Q \in E(\mathbb{F}_{p^k})$.
- Can compute $m \cdot P$ for a point $P \in E(\mathbb{F}_{p^k})$ and $m \in \mathbb{Z}$.

 \Rightarrow **One-way function:** $m \mapsto m \cdot P$ for some fixed $P \in E(\mathbb{F}_{p^k})$.

∧ not a post-quantum one-way function

Isogenies

An **isogeny** $\phi : E \to E'$ is a (special) map between elliptic curves.

Isogenies

An **isogeny** $\phi : E \to E'$ is a (special) map between elliptic curves.

An *N*-isogeny is an isogeny $\phi: E \to E'$ with kernel $K \simeq \mathbb{Z}/N\mathbb{Z}$.

• Complexity: O(N) (Vélu) or $\tilde{O}(\sqrt{N})$ ($\sqrt{\text{élu}}$)

Isogenies

An **isogeny** $\phi : E \to E'$ is a (special) map between elliptic curves.

An *N*-isogeny is an isogeny $\phi: E \to E'$ with kernel $K \simeq \mathbb{Z}/N\mathbb{Z}$.

• Complexity: O(N) (Vélu) or $\tilde{O}(\sqrt{N})$ ($\sqrt{\text{élu}}$)

Smooth-degree isogenies

- Composition of small degree isogenies
- E.g. for $N = 2^k$ in time $O(k \log(k))$.

Isogeny graphs

- Vertices: elliptic curves (E).
- **Edges**: ℓ -isogenies with $\ell \in \{\ell_1, \ldots, \ell_n\}$ **E**-**E**'.

Two typical graphs

supersingular curves over \mathbb{F}_{p^2} $\ell \in \{2,3\}$, p=431

supersingular curves over \mathbb{F}_p $\ell \in \{3, 5, 7\}, p = 419.$

Setup Fix an elliptic curve *E*,

in an $\{\ell_1,\ldots,\ell_n\}\text{-isogeny graph with efficient navigation.}$

No polynomial quantum attacks are known.

Setup

Fix a starting curve (E).

SetupSecret pathsFix a startingAlice:curve (E).-------

(*) It is not obvious how to <u>repeat</u> a path with a different starting vertex, so that the paths commute.

Isogeny-based primitives in dimension 1

What are 2-dimensional elliptic curves?

An elliptic curve

• is a 1-dimensional variety

 $E: Y^2Z = X^3 + aXZ^2 + bZ^3 \subset \mathbb{P}^2.$

• equipped with a group structure.

What are 2-dimensional elliptic curves principally polarized abelian varieties?

An elliptic curve

• is a 1-dimensional variety

 $E: Y^2 Z = X^3 + a X Z^2 + b Z^3 \subset \mathbb{P}^2.$

• equipped with a group structure.

It is a principally polarized abelian variety (p.p.a.v.) of dimension 1.

What are 2-dimensional elliptic curves principally polarized abelian varieties?

An elliptic curve

• is a 1-dimensional variety

 $E: Y^2 Z = X^3 + a X Z^2 + b Z^3 \subset \mathbb{P}^2.$

• equipped with a group structure.

It is a principally polarized abelian variety (p.p.a.v.) of dimension 1.

How to construct a p.p.a.v. of dimension 2?

1 + 1 = 2: product of elliptic curves $E_1 \times E_2$

2 = 2: Irreducible p.p.a.v of dimension 2

Genus-2 curve $C : y^2 = f(x)$, with deg $(f) \in \{5, 6\}$.

$$y^2 = x(x^2 - 1)(x^2 - 4)$$

2 = 2: Irreducible p.p.a.v of dimension 2

Genus-2 curve $C : y^2 = f(x)$, with deg $(f) \in \{5, 6\}$.

2 = 2: Irreducible p.p.a.v of dimension 2

Genus-2 curve $C : y^2 = f(x)$, with deg $(f) \in \{5, 6\}$.

The **Jacobian of** *C*, *Jac*(*C*), is a principally polarized abelian surface.

- Complicated as a variety (e.g. defined by 72 polynomials in ℙ¹⁵).
- Easy description of $D \in Jac(C)$: D = (P, Q) with P, Q points of C.

Isogenies in dimension 2

dimension 1

N-isogeny $\phi: E \to E'$ surjective morphism with ker $(\phi) \simeq \mathbb{Z}/N\mathbb{Z}$.

dimension 2

(N, N)-isogeny surjective morphism $\phi : A \to A'$ has <u>isotropic</u>¹ ker $(\phi) \simeq (\mathbb{Z}/N\mathbb{Z})^2$

Isogenies in dimension 2

dimension 1

N-isogeny $\phi: E \to E'$ surjective morphism with ker $(\phi) \simeq \mathbb{Z}/N\mathbb{Z}$.

dimension 2

(N, N)-isogeny surjective morphism $\phi : A \to A'$ has isotropic¹ ker $(\phi) \simeq (\mathbb{Z}/N\mathbb{Z})^2$

Isogenies in dimension 2

dimension 1

N-isogeny $\phi: E \to E'$ surjective morphism with ker $(\phi) \simeq \mathbb{Z}/N\mathbb{Z}$.

all isogenies are generic

dimension 2

(N, N)-isogeny surjective morphism $\phi : A \to A'$ has isotropic¹ ker $(\phi) \simeq (\mathbb{Z}/N\mathbb{Z})^2$

4 isogeny types:

- 1. generic3. gluing
- 2. splitting 4. product

¹Weil pairing is trivial.

Isogeny graphs in dimension 2

Vertices: p.p. abelian surfaces $\bigcirc E \times E'$

(vey inaccurate) sketch of an isogeny graph \bigcirc \bigcirc \bigcirc 0 0 0 $^{\circ}$ 0 \bigcirc 0 0 0 0 0 \bigcirc 0 $^{\circ}$ \bigcirc 0 \cap $\ell = 2, p = 53$ generically, the graph is 15-regular (for $\ell = 2$)

Isogeny graphs in dimension 2

Vertices: p.p. abelian surfaces $\bigcirc E \times E'$ **Edges:** (ℓ, ℓ) -isogenies with $\ell \in \{\ell_1, \dots, \ell_n\}$ \bigcirc

(for $\ell=$ 2)

Vertices: p.p. abelian surfaces $\bigcirc E \times E' \quad \bigcirc Jac(C)$ **Edges:** (ℓ, ℓ) -isogenies with $\ell \in \{\ell_1, \dots, \ell_n\}$ \bigcirc - \bigcirc

Isogeny graphs in dimension 2

Vertices: p.p. abelian surfaces $\bigcirc E \times E' \quad \bigcirc Jac(C)$ **Edges:** (ℓ, ℓ) -isogenies with $\ell \in \{\ell_1, \dots, \ell_n\}$

Isogeny graphs in dimension 2

Vertices: p.p. abelian surfaces $\bigcirc E \times E' \quad \bigcirc Jac(C)$ **Edges:** (ℓ, ℓ) -isogenies with $\ell \in \{\ell_1, \ldots, \ell_n\}$ $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

generically, the graph is 15-regular

(for $\ell = 2$)

Vertices: p.p. abelian surfaces $\bigcirc E \times E' \bigcirc Jac(C)$ **Edges:** (ℓ, ℓ) -isogenies with $\ell \in \{\ell_1, \dots, \ell_n\}$ $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ **Key features**

- For small $\ell,$ we can navigate efficiently. a

is hard

(for $\ell = 2$)

^aMore details on Slide 15

Dimension 2 meets dimension 1

Kani's Lemma (1997)

Product isogeny (dimension 2)

 $(d_A + d_B, d_A + d_B)$ isogeny F

$d_A + d_B$ interpolation data of $f_A, f_B \Rightarrow$ kernel of F

 \Leftrightarrow

Kani's lemma serves as a key ingredient for attacking the isogeny one-way function **with torsion point information**.

Setting Given *E*, *E*_A and interpolation data *P*, *Q*, *f*_A(*P*), *f*_A(*Q*) with $\langle P, Q \rangle = E[d_A + d_B]$, find *f*_A.

Kani's lemma serves as a key ingredient for attacking the isogeny one-way function **with torsion point information**.

Setting Given *E*, *E*_A and interpolation data *P*, *Q*, *f*_A(*P*), *f*_A(*Q*) with $\langle P, Q \rangle = E[d_A + d_B]$, find *f*_A.

Idea (Castryck-Decru, Maino-Martindale-Panny-Pope-Wesolowski, Robert)

Kani's lemma serves as a key ingredient for attacking the isogeny one-way function **with torsion point information**.

Setting Given *E*, *E*_A and interpolation data *P*, *Q*, *f*_A(*P*), *f*_A(*Q*) with $\langle P, Q \rangle = E[d_A + d_B]$, find *f*_A.

Idea (Castryck-Decru, Maino-Martindale-Panny-Pope-Wesolowski, Robert)

1. Construct f_B to obtain an isogeny diamond.

Kani's lemma serves as a key ingredient for attacking the isogeny one-way function **with torsion point information**.

Setting Given *E*, *E*_A and interpolation data *P*, *Q*, *f*_A(*P*), *f*_A(*Q*) with $\langle P, Q \rangle = E[d_A + d_B]$, find *f*_A.

Idea (Castryck-Decru, Maino-Martindale-Panny-Pope-Wesolowski, Robert)

- 1. Construct f_B to obtain an isogeny diamond.
- 2. Use Kani to obtain a product isogeny F.

Kani's lemma serves as a key ingredient for attacking the isogeny one-way function **with torsion point information**.

Setting Given *E*, *E*_A and interpolation data *P*, *Q*, *f*_A(*P*), *f*_A(*Q*) with $\langle P, Q \rangle = E[d_A + d_B]$, find *f*_A.

Idea (Castryck-Decru, Maino-Martindale-Panny-Pope-Wesolowski, Robert)

- 1. Construct f_B to obtain an isogeny diamond.
- 2. Use Kani to obtain a product isogeny F.
- 3. Recover f_A from F.

 $d_A + d_B \in \{2^n, 3^m\} \Rightarrow need (2, 2)$ - and (3, 3)-isogenies

 $d_A + d_B \in \{2^n, 3^m\} \Rightarrow need (2, 2)- and (3, 3)-isogenies$

(2, 2)-isogenies \rightarrow attack Bob's secret.

- Original implementations: Richelot isogenies
- Explicit formulas in Mumford/Kummer coordinates (Kunzweiler '2022)
- Explicit formulas in theta coordinates (Dartois-Maino-Pope-Robert '2023).

 $d_A + d_B \in \{2^n, 3^m\} \Rightarrow need (2, 2)- and (3, 3)-isogenies$

(2,2)-isogenies \rightarrow attack Bob's secret.

- Original implementations: Richelot isogenies
- Explicit formulas in Mumford/Kummer coordinates (Kunzweiler '2022)
- Explicit formulas in theta coordinates (Dartois-Maino-Pope-Robert '2023).

(3,3)-isogenies \rightarrow attack Alice's secret.

- First implementation (Decru-Kunzweiler '2023) optimizing formulas by Bruin-Flynn-Testa (2014)
- Formulas in theta coordinates (Costello-Santos-Smith '2024)

More dimensions!

dimension 1 (abelian curves)

\subset

elliptic curve

dimension 2 (abelian surfaces)

product of elliptic curves

Jacobian of a genus-2 curve

dimension 1 (abelian curves)

elliptic curve

dimension 2 (abelian surfaces)

product of elliptic curves

Jacobian of a genus-2 curve

dimension 3 (abelian threefolds)

dimension 1 (abelian curves)

elliptic curve

dimension 2 (abelian surfaces)

product of elliptic curves

Jacobian of a genus-2 curve

dimension 1 (abelian curves)

elliptic curve

dimension 2 (abelian surfaces)

product of elliptic curves

dimension 3 (abelian threefolds)

products

Jacobian of a genus-2 curve

elliptic curve

dimension 2 (abelian surfaces)

product of elliptic curves

dimension 3 (abelian threefolds)

products

Jacobian of a genus-2 curve

Jacobians of genus-3 curves

Why do we need more dimensions in cryptography?

1. **for cryptanalysis**: The unconditional poly-time attack on SIDH (Robert) requires working in dimension 8.

Why do we need more dimensions in cryptography?

- 1. **for cryptanalysis**: The unconditional poly-time attack on SIDH (Robert) requires working in dimension 8.
- \Rightarrow new tool: HD representations!

HD representations

Any *N*-isogeny $f : E \to E'$ (of elliptic curves) has an efficient representation in dimension $d \in \{2, 4, 8\}$. \Rightarrow Evaluation in $O(\log^{c}(N))$ for some constant *c*.

Why do we need more dimensions in cryptography?

- 1. for cryptanalysis: The unconditional poly-time attack on SIDH (Robert) requires working in dimension 8.
- \Rightarrow new tool: HD representations!

HD representations

Any *N*-isogeny $f : E \to E'$ (of elliptic curves) has an efficient representation in dimension $d \in \{2, 4, 8\}$. \Rightarrow Evaluation in $O(\log^{c}(N))$ for some constant c.

2. for constructive applications:

- SQISignHD
- SQISign2D ×3
 SCALLOP-HD
- FESTA, QFESTA
 HD VRF
- IS-CUBE

- POKF

- CLAPOTIS

since 2022!

Computations in arbitrary dimensions

A: principally polarized abelian variety of dimension g.

- \checkmark Dimension g > 3: A generically not the Jacobian of a curve.
- ✓ The Kummer variety $K = A/(\pm 1)$ has a nice representation:

$$\theta: K \to \mathbb{P}^{2^g-1}$$

given by theta coordinates.

Computations in arbitrary dimensions

A: principally polarized abelian variety of dimension g.

- \checkmark Dimension g > 3: A generically not the Jacobian of a curve.
- ✓ The Kummer variety $K = A/(\pm 1)$ has a nice representation:

$$\theta: K \to \mathbb{P}^{2^g - 1}$$

given by theta coordinates.

 $\phi: \mathsf{A} \to \mathsf{A}':$ an (ℓ, \dots, ℓ) -isogeny of p.p.a.v.

Computations in arbitrary dimensions

A: principally polarized abelian variety of dimension g.

- \checkmark Dimension g > 3: A generically not the Jacobian of a curve.
- ✓ The Kummer variety $K = A/(\pm 1)$ has a nice representation:

$$\theta: K \to \mathbb{P}^{2^g - 1}$$

given by theta coordinates.

 $\phi: \mathsf{A} \to \mathsf{A}':$ an (ℓ, \dots, ℓ) -isogeny of p.p.a.v.

- $\ell = 2$: Algorithm by Robert (2023) in any dimension.
 - ✓ Implementations by Dartois, Maino, Pope, Robert (g = 2) and Dartois (g = 4)
 - **X** dimensions g = 3 and g > 4 missing.
- $\ell \neq 2$ prime: Algorithms by Cosset, Lubicz, Robert in $ilde{O}(\ell^g)$.
 - x not yet optimized for crypto applications.

Conclusion

Exciting time for higher dimensions in isogeny-based cryptography.

What's next?

- Optimize higher dimensional computations.
- More applications of HD-representations.
- Exploit the full structure of higher dimensional isogeny graphs.
- Better understanding of higher dimensional isogeny graphs.

Conclusion

Exciting time for higher dimensions in isogeny-based cryptography.

What's next?

- Optimize higher dimensional computations.
- More applications of HD-representations.
- Exploit the full structure of higher dimensional isogeny graphs.
- Better understanding of higher dimensional isogeny graphs.

Thanks for your attention!