Cryptanalysis of the SNOVA Signature Scheme

Peigen Li

Beijing Institute of Mathematical Sciences and Applications

Joint work with Jingtai Ding Ipg22@bimsa.cn

PQcrypto-June 12,2024

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

BIMSA

Peigen Li

イロト イポト イヨト イヨト

SNOVA is a multivariate signature scheme (based on UOV scheme) submitted to the additional NIST PQC standardization project started in 2022. It has lower public key size compared to UOV.

Description of UOV[Patarin1999]

.

UOV scheme is based on a trapdoor multivariate quadratic function. The central map

$$\mathcal{F} = (f_1, \cdots, f_m) : \mathbb{F}_q^n \to \mathbb{F}_q^m$$

is designed such that each f_1, \cdots, f_m is a quadratic polynomial of the form

$$f_k(x) = \sum_{i=1}^n \sum_{j=1}^v \alpha_{ij}^k x_i x_j = (\overrightarrow{x_v}^t \quad \overrightarrow{x_o}^t) \begin{pmatrix} *_{v \times v} & *_{v \times m} \\ *_{m \times v} & 0 \end{pmatrix} \begin{pmatrix} \overrightarrow{x_v} \\ \overrightarrow{x_o} \end{pmatrix}.$$
(1.1)
where $\alpha_{ij}^k \in \mathbb{F}_q$, $v = n - m$. $\overrightarrow{x_v}$ is called vinegar variables, $\overrightarrow{x_o}$ is called oil variables. Fix $\overrightarrow{x_v} = a$, the system $f_k(a, \overrightarrow{x_o}) = y_k$ becomes a linear system.

(a)

A linear map $\mathcal{S}:\mathbb{F}_q^n\to\mathbb{F}_q^n$ is then randomly chosen. Next, the public key map is

$$\mathcal{P} = \mathcal{F} \circ \mathcal{S} = (p_1, \cdots, p_m) : \mathbb{F}_q^n \to \mathbb{F}_q^m.$$

The secret key is \mathcal{S} .

A linear map $\mathcal{S}:\mathbb{F}_q^n\to\mathbb{F}_q^n$ is then randomly chosen. Next, the public key map is

$$\mathcal{P} = \mathcal{F} \circ \mathcal{S} = (p_1, \cdots, p_m) : \mathbb{F}_q^n \to \mathbb{F}_q^m.$$

The secret key is S. In general, it's hard to find a preimage of \mathcal{P} unless we know a basis of the oil space $\mathcal{O} := S^{-1}\{(0, \cdots, 0, a_{v+1}, \cdots, a_n)^t : a_i \in \mathbb{F}_q\}$. Note that

$$\mathcal{P}(\mathcal{O}) = 0 \in \mathbb{F}_q^m.$$

・ロ・・師・・雨・・雨・ ・日・

BIMSA

- Advantage: short signature and short execution time.
- Disadvantage: large public key size.

	pk	sig
UOV 1	94 Kb	98 Bytes
Dilithium 2	1.28 Kb	2420 Bytes
SNOVA 1	2.25 Kb	148 Bytes

• The idea of SNOVA is replacing the coefficients ring \mathbb{F}_q by matrix ring to reduce the size of public key.

(日) (四) (三) (三)

Description of SNOVA scheme

• $\mathcal{R} = Mat_{I \times I}(\mathbb{F}_q)$:

matrix ring consisting by $l \times l$ matrices over \mathbb{F}_q , l = 2, 3, 4.

- [P], [F] denote some $n \times n$ matrices whose entries are elements of $\mathcal R$
- For each $Q \in \mathcal{R}$, we use

$$\left[\Lambda_Q\right] = \begin{bmatrix} Q & & \\ & \ddots & \\ & & Q \end{bmatrix}$$

to denote the $n \times n$ block matrix whose diagonal elements are Q

イロト 不得 トイヨト イヨト

Cryptanalysis of the SNOVA Signature Scheme

Peigen Li

Description of SNOVA scheme

The subring 𝔽_q[s].
𝔽_q[s] = {a₀ + a₁s + ··· + a_{l-1}s^{l-1} : a₀, a₁, ··· , a_{l-1} ∈ 𝔽_q} where s is an l × l symmetric matrix randomly chosen from *𝔅*, and the characteristic polynomial of s is irreducible. Note that 𝔽_q[s] is a subfield of *𝔅* and dim_{𝔅q} 𝔽_q[s] = l.

イロト イポト イヨト イヨト

Central map $F : \mathcal{R}^n \longrightarrow \mathcal{R}^m$

For
$$i = 1, \cdots, m$$
,

$$F_i(x_1,\ldots,x_n) = \sum_{\alpha=1}^{l^2} A_{\alpha} \cdot x^t \left(\left[\Lambda_{Q_{\alpha 1}} \right] \left[F_i \right] \left[\Lambda_{Q_{\alpha 2}} \right] \right) x \cdot B_{\alpha}$$

 $[F_i]$ is the form of

$$[F_i] = \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & 0 \end{bmatrix} \in \mathsf{Mat}_{I \times I}(\mathcal{R}),$$

with $F_{11} \in M_{v \times v}(\mathcal{R})$, $F_{12} \in M_{v \times m}(\mathcal{R})$ and $F_{21} \in M_{m \times v}(\mathcal{R})$. A_{α} , B_{α} are chosen randomly from \mathcal{R} and $Q_{\alpha 1}$, $Q_{\alpha 2}$ are chosen randomly from $\mathbb{F}_q[s] \setminus \{0\}$.

Peigen Li

イロト イボト イヨト イヨト

Central map and private key T

Invertible linear map T : Rⁿ → Rⁿ, T is the map that corresponding to the matrix

$$[T] = \begin{bmatrix} I_{v \times v} & T_{v \times o} \\ 0 & I_{o \times o} \end{bmatrix},$$

with $T_{v \times o} \in M_{v \times m}(\mathbb{F}_q[s])$, $I_{v \times v}$ and $I_{m \times m}$ are the diagonal matrices with all entries being the identity matrix in \mathcal{R} .

イロト イボト イヨト イヨト

L

BIMSA

(a)

Public key $P = F \circ T$

Let
$$P = F \circ T$$
. Set $x = [T] \cdot u$. For $i = 1, 2, ..., m$,

$$P_i(u) = F_i(T(u)) = \sum_{\alpha=1}^{l^2} A_{\alpha} \cdot u^t \left([\Lambda_{Q_{\alpha 1}}] [P_i] [\Lambda_{Q_{\alpha 2}}] \right) u \cdot B_{\alpha}$$

Note that

 $[P_i] = [T]^t [F_i] [T].$

Peigen Li

Public key and private key of SNOVA

Public key: The map P : Rⁿ → R^m,
 i.e., the corresponding matrices [P_i], i = 1, · · · , m and

$$A_{\alpha}, B_{\alpha}, Q_{\alpha 1}, Q_{\alpha 2}, \ \alpha = 1, 2, \dots, l^2$$

・ロト ・四ト ・ヨト ・ヨト

• Private key: (F, T), i.e., the matrix [T], the matrices $[F_i]$ for i = 1, ..., m.

Sign and Verify

Sign Choose random values $a_1, \ldots, a_v \in \mathcal{R}$ as the vinegar variables x_1, \cdots, x_v , the system

$$F(a_1,\ldots,a_v,x_{v+1},\ldots,x_n) = Hash(message) \in \mathcal{R}^m$$

is a linear system with l^2m equations and l^2m variables since each x_i will provide l^2 variables for $i = v + 1, \dots, n$. sign = $T^{-1}(x) = T^{-1}(a_1, \dots, a_v, a_{v+1}, \dots, a_n)^t$ is the signature.

Verify Let sign = $(s_1, ..., s_n)$ be the signature to be verified. If Hash(Message) = P(sign), then the signature is accepted, otherwise rejected.

イロト イボト イヨト イヨト

Advantage of SNOVA

• Small public key size and signature size.

	pk	sig
UOV 1	94 Kb	98 Bytes
Dilithium 2	1.28 Kb	2420 Bytes
SNOVA 1	2.25 Kb	148 Bytes

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ ○へぐ

BIMSA

Peigen Li

イロト イポト イヨト イヨト

Structure of SNOVA

Claim 1. An SNOVA(v, m, q, l) scheme can be regarded as a UOV(lv, lm, q) scheme with l^2m equations over \mathbb{F}_q , rather than a UOV(l^2v, l^2m, q) scheme over \mathbb{F}_q as claimed by the authors.

- all the matrices [F_i], [T], and [P_i] can be viewed as In × In matrices in M_{In×In}(𝔽_q)
- the lower-right Im × Im block is zero block for each [F_i]. Therefore there exists a common oil space of [F_i] over F_q with dimension Im. Set

$$\mathcal{O}_1 = \left\{ (0, \cdots, 0, a_{lv+1}, \cdots, a_{ln})^t \in \mathbb{F}_q^{ln} : a_i \in \mathbb{F}_q \right\}$$

and $\mathcal{O} = [T]^{-1}(\mathcal{O}_1) \subset \mathbb{F}_q^{ln}$. • for any u, v $\in \mathcal{O}$, $0 \leq j, k \leq l-1$, we have

$$\mathsf{u}^t \cdot \left([\Lambda_{s^j}][P_i][\Lambda_{s^k}] \right) \cdot \mathsf{v} = \mathsf{0} \in \mathbb{F}_q ext{ for } i = 1, \cdots, m.$$
 (1.2)

イロト イポト イヨト イヨト

Structure of SNOVA

Claim 2. An SNOVA(v, m, q, l) scheme can induce a standard UOV (v, m, q^{l}) scheme.

Structure of SNOVA

Claim 2. An SNOVA(v, m, q, l) scheme can induce a standard UOV (v, m, q^{l}) scheme.

We can recover the oil space of SNOVA by recovering the oil space of the induced $UOV(v, m, q^l)$ scheme.

But we are not going to use the induced $UOV(v, m, q^{l})$ scheme to give specific complexity of SNOVA(v, m, q, l) scheme since the complexity is still large.

BIMSA

Let $\lambda \in \mathbb{F}_{q'}$ be an eigenvalue of s and $\xi \in (\mathbb{F}_{q'})^{l}$ an eigenvector corresponding to λ . Take

$$\mathcal{O}_2 := [T]^{-1} \left(\left\{ (0, \cdots, 0, a_{\nu+1}\xi^t, \cdots, a_n\xi^t)^t \in \mathbb{F}_{q^l}^{ln} : a_i \in \mathbb{F}_{q^l} \right\} \right)$$

For any $u,v\in \mathcal{O}_2,$ we have

$$\mathbf{u}^t \cdot \left([\Lambda_{s^j}][P_i][\Lambda_{s^k}] \right) \cdot \mathbf{v} = \lambda^{j+k} \mathbf{u}^t \cdot [P_i] \cdot \mathbf{v}.$$

・ロ・・四・・ヨ・・ヨ・ つへぐ

BIMSA

Peigen Li

Take

$$\mathcal{O}_2' = \{(a_1, \cdots, a_n): \ (a_1\xi^t, \cdots, a_n\xi^t)^t \in \mathcal{O}_2\} \subset \mathbb{F}_{q'}^n.$$

Let $[P_i] = [P_{i,jk}]$ be the public key of SNOVA scheme with $P_{i,jk} \in \mathcal{R}$. Set

$$\widetilde{P}_{i,jk} = \xi^t \cdot P_{i,jk} \cdot \xi \in \mathbb{F}_{q'}, \quad [\widetilde{P}_i] = (\widetilde{P}_{i,jk}) \in \mathsf{M}_{n \times n}(\mathbb{F}_{q'}).$$
(1.3)

We have

$$\tilde{\mathbf{u}}^t \cdot [\widetilde{P}_i] \cdot \tilde{\mathbf{v}} = (\tilde{\mathbf{u}} \otimes \xi)^t \cdot [P_i] \cdot (\tilde{\mathbf{v}} \otimes \xi) = 0$$
(1.4)

for any $\tilde{u}, \tilde{v} \in \mathcal{O}'_2$ and $i = 1, \cdots, m$.

<ロト < 回 > < 巨 > < 巨 > 三 の < C BIMSA

イロト イポト イヨト イヨト

In the following, we only use the claim 1 to give the new complexity of SNOVA.

Claim 1. An SNOVA(v, m, q, l) scheme can be regarded as a UOV(lv, lo, q) scheme with l^2m equations over \mathbb{F}_q , rather than a UOV(l^2v, l^2m, q) scheme over \mathbb{F}_q as claimed by the authors. to give a new complexity of SNOVA.

イロト イポト イヨト イヨト

In the SNOVA scheme, we have claimed that SNOVA (v, m, q, l) scheme over \mathcal{R} can be regarded as a UOV (lv, lm, q) scheme. The complexity is

$$\mathsf{Comp}_{\mathsf{KS}; \mathsf{ classical}}\mathsf{SNOVA} = q^{lv-lm-1} \cdot (lm)^4$$

field multiplications.

Reconciliation Attack

The reconciliation attack can be decomposed into a series of steps:

- find an element
$$u = (u_1, \dots, u_{l\nu}, 0, \dots, 0, 1)^t \in \mathbb{F}_q^{ln}$$
 s.t.
 $u^t \cdot ([\Lambda_{s^j}][P_i][\Lambda_{s^k}]) \cdot u = 0$ (3.1)

 \rightarrow l^2o equations in lv variables

- using the equations $u^t \cdot ([\Lambda_{s^j}][P_i][\Lambda_{s^k}]) \cdot v = 0$, we get $2l^2m$ linear equations for the other elements of O

$$Comp_{Rec}SNOVA = \min_{k} q^{k} MQ(lv + 1 - k, l^{2}m, q)$$

where $\max\{0, lv + 1 - l^2m\} \le k \le lv$ is the number of fixed variables in the hybrid approach since equation (3.1) has a lot of solutions not in the space \mathcal{O} .

Peigen Li

Intersection attack

Let M_1, M_2 be two invertible matrices in the set of linear combinations of $\{ [\Lambda_{s^j}] [P_i] [\Lambda_{s^k}] \}_{1 \le i \le m, 0 \le j, k \le l-1}$

- Goal: Find $x \in M_1\mathcal{O} \cap M_2\mathcal{O}$
- In the case of $2Im > Iv. \times is$ a solution of

$$\begin{cases} \left(M_{1}^{-1}x\right)^{t} \cdot \left(\left[\Lambda_{s^{j}}\right]\left[P_{i}\right]\left[\Lambda_{s^{k}}\right]\right) \cdot \left(M_{1}^{-1}x\right) = 0\\ \left(M_{1}^{-1}x\right)^{t} \cdot \left(\left[\Lambda_{s^{j}}\right]\left[P_{i}\right]\left[\Lambda_{s^{k}}\right]\right) \cdot \left(M_{2}^{-1}x\right) = 0\\ \left(M_{2}^{-1}x\right)^{t} \cdot \left(\left[\Lambda_{s^{j}}\right]\left[P_{i}\right]\left[\Lambda_{s^{k}}\right]\right) \cdot \left(M_{1}^{-1}x\right) = 0\\ \left(M_{2}^{-1}x\right)^{t} \cdot \left(\left[\Lambda_{s^{j}}\right]\left[P_{i}\right]\left[\Lambda_{s^{k}}\right]\right) \cdot \left(M_{2}^{-1}x\right) = 0\end{cases}$$

The attack is reduced to find a solution to the above system of $4l^2m$ quadratic equations in 2lv - lm variables

Peigen Li

イロト イボト イヨト イヨト

Intersection attack

• In the case of $2 \text{Im} \leq \text{Iv}$.

The intersection $M_1\mathcal{O} \cap M_2\mathcal{O}$ may have no nontrivial vector. The probability that the intersection is non-trivial $\approx q^{-l\nu+2lm-1}$. Therefore, the attack becomes a probabilistic algorithm The

complexity is

$$Comp_{Int.}SNOVA = q^{lv-2ml+1}MQ(ln, 4l^2m, q)$$

イロト イポト イヨト イヨト

< ロ > < 同 > < 三 > < 三 >

Table 1 presents the complexity of respective attacks against the parameters submitted by SNOVA. In each pair of complexities, the left one denotes the complexity in classical gates using the analysis results in this article, and the right one denotes the complexity in classical gate given by SNOVA team, where k is the number of fixed variables in the hybrid approach.

Table: Table of classical complexity in $\log_2(\#gates)$

SL	(v, m, q, l)	K-S	Reconciliation	Intersection
I	(28,17,16,2)	93 /181	132 /192(<i>k</i> = 2)	83 /275 (<i>k</i> = 0)
	(25,8,16,3)	209/617	$201/231 \ (k = 15)$	221/819(k = 0)
	(24,5,16,4)	309/1221	270/286(k = 30)	349/1439(k = 0)
111	(43,25,16,2)	149 /293	193 /279(<i>k</i> = 6)	116 /439(<i>k</i> = 0)
	(49,11,16,3)	461/1373	438/530(k = 66)	529/1631(k = 0)
	(37,8,16,4)	469/1861	388/424(k = 45)	507/2192(k = 0)
V	(61,33,16,2)	229 /453	277/386(k = 17)	166 /727 (<i>k</i> = 0)
	(66,15,16,3)	617/1841	575/707(k = 87)	690/2178(k = 0)
	(60,10,16,4)	805/3205	695/812(k = 112)	922/3602(k=0)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

BIMSA

Peigen Li

(a)

Later, the team of SNOVA submit new parameters for I = 2 and modify their complexity.

(a)

Thanks for listening!