One vector to rule them all: Key recovery from one vector in UOV schemes

Pierre Pébereau Sorbonne Université, LIP6, CNRS, Thales SIX SORBONNE UNIVERSITÉ

June 12, 2024

Multivariate Quadratic Problem - MQ(n, m, q)

Find **a** solution (if any) $\mathbf{x} \in \mathbb{F}_q^n$ to a system of *m* quadratic equations in *n* variables

$$\mathcal{P}(\mathbf{x}) = \mathbf{0} \in \mathbb{F}_q^m$$

This problem is NP-hard: reduces to SAT

Multivariate Quadratic Problem - MQ(n, m, q)

Find a solution (if any) $x \in \mathbb{F}_q^n$ to a system of *m* quadratic equations in *n* variables

$$\mathcal{P}(\mathbf{x}) = \mathbf{0} \in \mathbb{F}_q^m$$

This problem is NP-hard: reduces to SAT

Multivariate Quadratic Cryptography

A multivariate signature scheme is defined by a key pair $(\mathcal{P}, \mathcal{S})$:

Multivariate Quadratic Problem - MQ(n, m, q)

Find a solution (if any) $x \in \mathbb{F}_q^n$ to a system of *m* quadratic equations in *n* variables

$$\mathcal{P}(\mathbf{x}) = \mathbf{0} \in \mathbb{F}_q^m$$

This problem is NP-hard: reduces to SAT

Multivariate Quadratic Cryptography

A multivariate signature scheme is defined by a key pair $(\mathcal{P}, \mathcal{S})$:

• The public key \mathcal{P} is an instance of MQ(n, m, q), n > m.

Multivariate Quadratic Problem - MQ(n, m, q)

Find a solution (if any) $x \in \mathbb{F}_q^n$ to a system of *m* quadratic equations in *n* variables

$$\mathcal{P}(\mathbf{x}) = \mathbf{0} \in \mathbb{F}_q^m$$

This problem is NP-hard: reduces to SAT

Multivariate Quadratic Cryptography

A multivariate signature scheme is defined by a key pair $(\mathcal{P}, \mathcal{S})$:

- The public key \mathcal{P} is an instance of MQ(n, m, q), n > m.
- The secret key S enables, for all $t \in \mathbb{F}_q^m$, to efficiently find $x \in \mathbb{F}_q^n$ s.t. $\mathcal{P}(x) = t$

Example

$$3 \cdot x^2 + 2 \cdot xy + 1 \cdot y^2$$

Example

$$3 \cdot x^{2} + 2 \cdot xy + 1 \cdot y^{2} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Example

$$3 \cdot x^2 + 2 \cdot xy + \mathbf{1} \cdot y^2 = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 \\ 0 & \mathbf{1} \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Representation

$$\sum_{1\leq i,j\leq n}^{n} a_{i,j} x_i x_j = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} \cdot \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Example

$$3 \cdot x^2 + 2 \cdot xy + \mathbf{1} \cdot y^2 = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 \\ 0 & \mathbf{1} \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Representation

$$\sum_{1 \le i,j \le n}^{n} a_{i,j} x_i x_j = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} \cdot \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Structured equations \iff structured matrices

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]

Secret key: - *m* quadratic polynomials $\mathbf{x}^T F_i \mathbf{x} \in \mathbb{F}_q[x_1, \dots, x_n]$

linear in x_1, \ldots, x_m .

- invertible change of variables A.

Figure 1: UOV key pair in \mathbb{F}_{257}

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]

Secret key: - m quadratic polynomials $\mathbf{x}^T F_i \mathbf{x} \in \mathbb{F}_q[x_1, \dots, x_n]$ linear in x_1, \dots, x_m .

- invertible change of variables A.

Public key: *m* quadratic polynomials $\mathbf{x}^T P_i \mathbf{x}$. $\mathcal{P} = \mathcal{F} \circ \mathbf{A} = (\mathbf{A}^T F_1 \mathbf{A}, \dots, \mathbf{A}^T F_m \mathbf{A})$

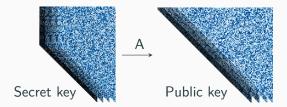


Figure 1: UOV key pair in \mathbb{F}_{257}

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]

Secret key: - *m* quadratic polynomials $\mathbf{x}^T F_i \mathbf{x} \in \mathbb{F}_q[x_1, \dots, x_n]$ linear in x_1, \dots, x_m .

- invertible change of variables A.

Public key: *m* quadratic polynomials $\mathbf{x}^T P_i \mathbf{x}$.

$$\mathcal{P} = \mathcal{F} \circ \mathbf{A} = (\mathbf{A}^T F_1 \mathbf{A}, \dots, \mathbf{A}^T F_m \mathbf{A})$$

Naming conventions and parameters

 $\mathbf{x} \in \mathbb{F}_q^n$ is a signature for message $\mathbf{t} \in \mathbb{F}_q^m$ if $\mathcal{P}(\mathbf{x}) = \mathbf{t}$.

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]

Secret key: - *m* quadratic polynomials $\mathbf{x}^T F_i \mathbf{x} \in \mathbb{F}_q[x_1, \dots, x_n]$ linear in x_1, \dots, x_m .

- invertible change of variables A.

Public key: *m* quadratic polynomials $\mathbf{x}^T P_i \mathbf{x}$.

$$\mathcal{P} = \mathcal{F} \circ \mathcal{A} = (\mathcal{A}^T F_1 \mathcal{A}, \dots, \mathcal{A}^T F_m \mathcal{A})$$

Naming conventions and parameters

 $\mathbf{x} \in \mathbb{F}_q^n$ is a signature for message $\mathbf{t} \in \mathbb{F}_q^m$ if $\mathcal{P}(\mathbf{x}) = \mathbf{t}$.

In practice: 2m < n

[Kipnis, Shamir 1998]

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]

Secret key: - *m* quadratic polynomials $\mathbf{x}^T F_i \mathbf{x} \in \mathbb{F}_q[x_1, \dots, x_n]$ linear in x_1, \dots, x_m .

- invertible change of variables A.

Public key: *m* quadratic polynomials $\mathbf{x}^T P_i \mathbf{x}$.

$$\mathcal{P} = \mathcal{F} \circ \mathbf{A} = (A^T F_1 A, \dots, A^T F_m A)$$

Naming conventions and parameters

 $\mathbf{x} \in \mathbb{F}_q^n$ is a signature for message $\mathbf{t} \in \mathbb{F}_q^m$ if $\mathcal{P}(\mathbf{x}) = \mathbf{t}$.

In practice: $2m < n \leq 3m$ [KS98] Key sizes [Kipnis, Shamir 1998]

UOV: Signatures and Parameters

Small signatures

 $\mathbf{x} \in \mathbb{F}_q^n$ is a signature for message $\mathbf{t} \in \mathbb{F}_q^m$ if $\mathcal{P}(\mathbf{x}) = \mathbf{t}$.

Small signatures

 $\mathbf{x} \in \mathbb{F}_q^n$ is a signature for message $\mathbf{t} \in \mathbb{F}_q^m$ if $\mathcal{P}(\mathbf{x}) = \mathbf{t}$.

	NIST SL	n	m	\mathbb{F}_q	pk (bytes)	sk (bytes)	cpk (bytes)	sig+salt (bytes)
ov-Ip	1	112	44	\mathbb{F}_{256}	278432	237912	43576	128
ov-Is	1	160	64	\mathbb{F}_{16}	412160	348720	66576	96
ov-III	3	184	72	\mathbb{F}_{256}	1225440	1044336	189232	200
ov-V	5	244	96	\mathbb{F}_{256}	2869440	2436720	446992	260

[Beullens, Chen, Hung, Kannwischer, Peng, Shih, Yang 2023]

Figure 2: Modern UOV parameters

UOV: Alternative formulation

$$\mathcal{P}, \mathcal{S} = (P_1, \ldots, P_m), (F_1, \ldots, F_m, A)$$

Equivalent characterisation of the trapdoor [Beullens 2020] Trapdoor: subspace $\mathcal{O} \subset \mathbb{F}_q^n$ of dimension *m* such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T P_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T P_m \boldsymbol{y} = 0$$

$$\mathcal{P}, \mathcal{S} = (P_1, \ldots, P_m), (F_1, \ldots, F_m, A)$$

Equivalent characterisation of the trapdoor [Beullens 2020] Trapdoor: subspace $\mathcal{O} \subset \mathbb{F}_q^n$ of dimension *m* such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T P_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T P_m \boldsymbol{y} = 0$$

Observation 1

The first *m* columns of A^{-1} form a basis of O.

$$\mathcal{P}, \mathcal{S} = (P_1, \ldots, P_m), (F_1, \ldots, F_m, A)$$

Equivalent characterisation of the trapdoor [Beullens 2020] Trapdoor: subspace $\mathcal{O} \subset \mathbb{F}_q^n$ of dimension *m* such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T P_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T P_m \boldsymbol{y} = 0$$

Observation 1

The first *m* columns of A^{-1} form a basis of O.

Observation 2

All vectors in \mathcal{O} are signatures of the message $(0, \ldots, 0) \in \mathbb{F}_q^m$.

Goal: Find a signature $x \in \mathbb{F}_q^n$ for a single message $t \in \mathbb{F}_q^m$.

$$V_t := \{ x \in \mathbb{F}_q^n \mid \mathcal{P}(x) = t \}$$

Goal: Find **a** signature $\mathbf{x} \in \mathbb{F}_q^n$ for a **single** message $\mathbf{t} \in \mathbb{F}_q^m$.

$$V_t := \{ x \in \mathbb{F}_q^n \mid \mathcal{P}(x) = t \}$$

Find a point in a variety of dimension n - m

Goal: Find **a** signature $\mathbf{x} \in \mathbb{F}_q^n$ for a **single** message $\mathbf{t} \in \mathbb{F}_q^m$.

$$V_t := \{ x \in \mathbb{F}_q^n \mid \mathcal{P}(x) = t \}$$

Find a point in a variety of dimension n - m

Key recovery

Goal: find an equivalent secret key.

$$\mathcal{O} \subset \{ \mathbf{x} \in \mathbb{F}_q^n \mid \mathcal{P}(\mathbf{x}) = \mathbf{0} \}$$

Goal: Find **a** signature $x \in \mathbb{F}_q^n$ for a **single** message $t \in \mathbb{F}_q^m$.

$$V_t := \{ x \in \mathbb{F}_q^n \mid \mathcal{P}(x) = t \}$$

Find a point in a variety of dimension n - m

Key recovery

Goal: find an equivalent secret key.

$$\mathcal{O} \subset \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \mathcal{P}(\boldsymbol{x}) = \boldsymbol{0} \}$$

Find a linear subspace of dimension m in V_0

Main result

Given **one vector** $x \in \mathcal{O}$ and the public key, compute a basis of

 \mathcal{O} in polynomial-time $O(mn^{\omega})$, $2 \leq \omega \leq 3$.

Main result

Given **one vector** $x \in O$ and the public key, compute a basis of O in polynomial-time $O(mn^{\omega})$, $2 \le \omega \le 3$.

n,m	112, 44	160, 64	184, 72	244, 96
Time	1.7s	4.4s	5.7s	13.3s

Figure 3: Implementation of our attack with sagemath on a laptop

Main result

Given **one vector** $x \in O$ and the public key, compute a basis of O in polynomial-time $O(mn^{\omega})$, $2 \le \omega \le 3$.

n,m	112, 44	160, 64	184, 72	244, 96
Time	1.7s	4.4s	5.7s	13.3s

Figure 3: Implementation of our attack with sagemath on a laptop

Corollary

Decide whether " $x \in \mathcal{O}$?" in polynomial-time $O(mn^{\omega})$.

Main result

Given **one vector** $x \in O$ and the public key, compute a basis of O in polynomial-time $O(mn^{\omega})$, $2 \le \omega \le 3$.

n,m	112, 44	160, 64	184, 72	244, 96
Time	1.7s	4.4s	5.7s	13.3s

Figure 3: Implementation of our attack with sagemath on a laptop

Corollary

Decide whether " $x \in \mathcal{O}$?" in polynomial-time $O(mn^{\omega})$.

n,m	112, 44	160, 64	184, 72	244, 96
Time	0.2s	0.5s	0.7s	1.5s

Figure 4: Implementation of " $x \in O$?" with **sagemath** on a laptop

Side-Channel Attacks

[Aulbach, Campos, Krämer, Samardjiska, Stöttinger CHES2023] previously obtained a similar result, with a polynomial key recovery from one vector.

n	112	160	184	244
Time	19m34s		3h7m55s	11h41m7s

Figure 5: Implementation in the context of side-channel attacks

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21] Attacks benefit from knowledge of some vectors of \mathcal{O} : additional equations in quadratic system

State-of-the-art of Key Recovery Attacks

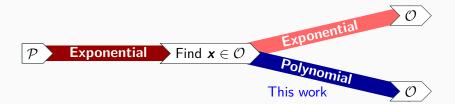
Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21] Attacks benefit from knowledge of some vectors of O: additional equations in quadratic system \rightarrow Reconciliation

State-of-the-art of Key Recovery Attacks

Reconciliation [Ding, Yang, Chen, Chen, Cheng 2008], [Beullens 2020/21] Attacks benefit from knowledge of some vectors of O: additional equations in quadratic system \rightarrow Reconciliation

This work

Any vector in \mathcal{O} characterizes it \rightarrow Polynomial reconciliation



$$\mathcal{P}, \mathcal{S}: (P_1, \ldots, P_m), \mathcal{O}$$

Equivalent characterisation of the trapdoor [Beullens 2020] Trapdoor: subspace \mathcal{O} of dimension *m* such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T P_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T P_m \boldsymbol{y} = 0$$

$$\mathcal{P}, \mathcal{S}: (P_1, \ldots, P_m), \mathcal{O}$$

Equivalent characterisation of the trapdoor [Beullens 2020] Trapdoor: subspace O of dimension m such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T P_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T P_m \boldsymbol{y} = 0$$

Reformulation

$$\forall \boldsymbol{x} \in \mathcal{O}, \quad \mathcal{O} \subset J(\boldsymbol{x}) := \ker(\boldsymbol{x}^{\mathsf{T}} P_1) \cap ... \cap \ker(\boldsymbol{x}^{\mathsf{T}} P_m)$$

$$\mathcal{P}, \mathcal{S}: (P_1, \ldots, P_m), \mathcal{O}$$

Equivalent characterisation of the trapdoor [Beullens 2020] Trapdoor: subspace O of dimension m such that

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{O}^2, \quad \boldsymbol{x}^T P_1 \boldsymbol{y} = \cdots = \boldsymbol{x}^T P_m \boldsymbol{y} = 0$$

Reformulation

$$\forall \boldsymbol{x} \in \mathcal{O}, \quad \mathcal{O} \subset J(\boldsymbol{x}) := \ker(\boldsymbol{x}^{\mathsf{T}} P_1) \cap ... \cap \ker(\boldsymbol{x}^{\mathsf{T}} P_m)$$

Observation

 $J(\mathbf{x})$ is of dimension n - m generically.

Reduction

Restriction $\mathcal{P}_{|J(\mathbf{x})} \rightarrow \text{UOV}$ instance with same trapdoor but less variables.

Reduction

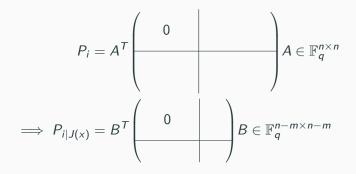
Restriction $\mathcal{P}_{|J(\mathbf{x})} \to \text{UOV}$ instance with same trapdoor but less variables.

$$P_i = A^T \begin{pmatrix} 0 & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{pmatrix} A \in \mathbb{F}_q^{n \times n}$$

Contribution: The algorithm

Reduction

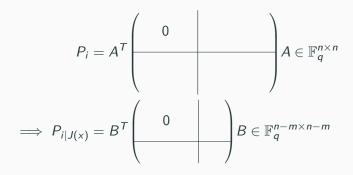
Restriction $\mathcal{P}_{|J(\mathbf{x})} \to \text{UOV}$ instance with same trapdoor but less variables.



Contribution: The algorithm

Reduction

Restriction $\mathcal{P}_{|J(\mathbf{x})} \to \text{UOV}$ instance with same trapdoor but less variables.



Concluding the attack

$$n-m \leq 2m \implies P_{i|J(x)}$$
 is singular.

12/16

Complexity of the attack

() Computing $J(\mathbf{x})$, kernel of $m \times n$ matrix

 $O(mn^2)$

Complexity of the attack

- **1** Computing $J(\mathbf{x})$, kernel of $m \times n$ matrix
- **2** Computing the restrictions: $P_{i|J(x)} = B^T P_i B$

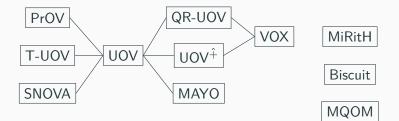
$$O(mn^2)$$

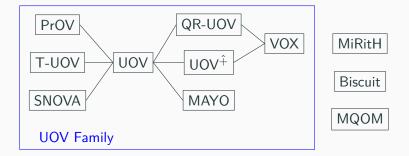
 $O(mn^{\omega})$

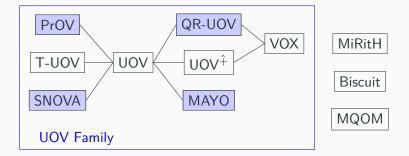
Complexity of the attack

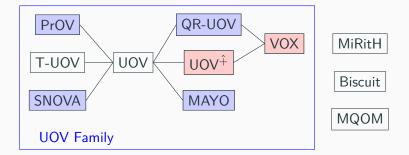
- **1** Computing $J(\mathbf{x})$, kernel of $m \times n$ matrix
- **2** Computing the restrictions: $P_{i|J(\mathbf{x})} = B^T P_i B$
- **3** Kernel computations
- Total cost: $O(mn^{\omega})$

 $O(mn^2)$ $O(mn^{\omega})$ $O(mn^{\omega})$









$\textbf{UOV} \hat{+}$

Replace $t \leq 8$ equations with random equations and mix.

$$\mathcal{P} = \mathcal{S} \cdot (F_1 \circ A, \dots, F_t \circ A, F_{t+1} \circ A, \dots, F_m \circ A)$$

UOVÂ

Replace $t \leq 8$ equations with random equations and mix.

$$\mathcal{P} = \mathcal{S} \cdot (F_1 \circ A, \dots, F_t \circ A, F_{t+1} \circ A, \dots, F_m \circ A)$$

Generalise " $x \in \mathcal{O}$?" to UOV $\hat{+}$

• This work: need t vectors in \mathcal{O} to decide in $O(mn^{\omega})$

UOVÂ

Replace $t \leq 8$ equations with random equations and mix.

$$\mathcal{P} = \mathcal{S} \cdot (F_1 \circ A, \dots, F_t \circ A, F_{t+1} \circ A, \dots, F_m \circ A)$$

Generalise " $x \in \mathcal{O}$?" to UOV $\hat{+}$

- This work: need t vectors in \mathcal{O} to decide in $O(mn^{\omega})$
- [P. 2024b]: need 1 vector to decide in $O(q^t n^{\omega})$

UOVÂ

Replace $t \leq 8$ equations with random equations and mix.

$$\mathcal{P} = \mathcal{S} \cdot (F_1 \circ A, \dots, F_t \circ A, F_{t+1} \circ A, \dots, F_m \circ A)$$

Generalise " $x \in \mathcal{O}$?" to UOV $\hat{+}$

- This work: need t vectors in \mathcal{O} to decide in $O(mn^{\omega})$
- [P. 2024b]: need 1 vector to decide in $O(q^t n^{\omega})$

Improve Kipnis-Shamir attack against UOV $\hat{+}$ [P. 2024b] $\implies O(q^{3t}) \rightarrow O(q^{2t} \cdot poly(n))$

Contributions

- One secret vector \rightarrow polynomial key recovery.
- Distinguish secret vectors from random signatures of 0.

New directions

- Efficiently generalize tools to more UOV schemes
- Key recovery attacks targeting one vector

Links

https://github.com/pi-r2/OneVector

Application to UOV variants in the NIST competition

For schemes that are instances of UOV \rightarrow direct application

- QR-UOV
- SNOVA
- PrOV

• Result already known on MAYO

[Beullens 2021]

Application to UOV variants in the NIST competition

For schemes that are instances of UOV \rightarrow direct application

- QR-UOV
- SNOVA
- PrOV
- Result already known on MAYO

[Beullens 2021]

More work required for schemes using modified UOV keys.

• Can it be faster on $UOV^{\hat{+}}$?

• T-UOV