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1. Introduction to Updatable Encryption



Key rotation on encrypted data

Key k,messages mi

ci ← Enc(k ,mi )
Ciphertexts ci

Client C Server S

c ′i

New key k ′

Update ci to c ′i

mi ← Dec(k ′, c ′i )

?

c0, . . . , cn

Question: How can the client efficiently update its key (and ciphertexts) while maintaining
the confidentiality of its data?
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Updatable Encryption: Key rotation [BLMR13]

Key k,messages mi

ci ← Enc(k ,mi )
Ciphertexts ci

Client C Server S

c ′i

∆← TokenGen(k, k ′)

New key k ′

c ′i ← Upd(∆, ci )

mi ← Dec(k ′, c ′i )

∆

c0, . . . , cn

Updatable Encryption from Group Actions Maxime Roméas (ANSSI) PQCrypto 2024, June 13th 4 / 17



Updatable Encryption syntax [BLMR13]

Definition

An updatable encryption scheme UE consists of the algorithms:

1 UE.Setup(1λ)→ pp: Outputs public parameters.

2 UE.KeyGen(pp)→ ke: Generates keys.

3 UE.Enc(k ,m)→ c : Encrypts a plaintext.

4 UE.Dec(k, c)→ m: Decrypts a ciphertext.

5 UE.TokenGen(ke, ke+1)→ ∆e+1: Generates a token from the keys of epochs e and
e + 1.

6 UE.Upd(∆e+1, ce)→ ce+1: Updates a ciphertext from epoch e to epoch e + 1.

A UE scheme operates in epochs where an epoch is an index incremented with each key
update.
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UE security: confidentiality game

IND-UE-{CPA/CCA} security notion of [BDGJ20]:

Adversary chooses message m and ciphertext c .
Challenge c̃ := Enck(m) or c̃ := Upd∆(c).

Goal: Distinguish between the two cases while having oracle access to UE’s functionalities
(encryption, update, key rotation, key and token corruption and decryption in the CCA
case).
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Contributions

Construction of a UE scheme in the group action framework:

1 post-quantum and IND-UE-CPA secure.

2 first post-quantum UE scheme not based on lattices.

3 instantiation possible from your favourite isogeny-based group action:
CSIDH or SCALLOP(-HD).

4 supports an unbounded number of updates.

5 efficient in terms of group action computations: only 1 group action computation
needed per encryption, decryption or update.
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2. Group Actions and Isogenies



Group actions

Definition (Group Action)

A group G acts on a set S if there exists ⋆ : G × S → S such that:

1 (Identity) If 1G is the identity element of G , then ∀s ∈ S , 1G ⋆ s = s.

2 (Compatibility) ∀g , h ∈ G , ∀s ∈ S , (gh) ⋆ s = g ⋆ (h ⋆ s).

Example

The multiplicative group Z∗
p acts on a cyclic group S of order p by exponentiation.

For a ∈ Z∗
p and s ∈ S , a ⋆ s := sa.
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Elliptic curves and isogenies

Elliptic Curve over K :
y2 = x3 + ax + b

E (K ) is an additive group. Scalar multiplication [n] is the analog of exponentiation in this
group.

Isogeny φ : E1 → E2: non-constant morphism sending 0E1 to 0E2 .

Imaginary quadratic order O, e.g. Z[i ] or Z[
√
−p].

One can find a set of elliptic curves S (O-oriented supersingular curves) such that we get a
group action:

Cl(O)× S → S
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3. Updatable Encryption from Group Actions



The SHINE scheme of [BDGJ20]

S cyclic group of prime order p and π : {0, 1}m → S efficient and invertible map.

KeyGen(pp):

k ← Z∗
p

return k

Enc(ke,M):

N ← N
Ce ← (π(N∥M))ke

return Ce

Dec(ke,Ce):

s ← π−1(C
1/ke
e )

Parse s as N ′∥M ′

return M ′

TokenGen(ke, ke+1):

∆e+1 ← ke+1/ke

return ∆e+1

Upd(∆e+1,Ce):

Ce+1 ← C
∆e+1
e

return Ce+1

Theorem (BDGJ20)

• SHINE is det-IND-UE-CPA secure under DDH.
• SHINE can be made det-IND-UE-CCA secure under CDH.
Both proofs are provided in the ideal cipher model.

Updatable Encryption from Group Actions Maxime Roméas (ANSSI) PQCrypto 2024, June 13th 10 / 17
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GAINE: first generalization to group actions

(G , S , ⋆) group action and π : {0, 1}m → S efficient and invertible map. We say that such
a group action is mappable.

We introduce the GAINE (Group Action Ideal-cipher Nonce-based Encryption) scheme.

KeyGen(pp):

k ← G

return k

Enc(ke,M):

N ← N
Ce ← ke ⋆ π(N∥M)

return Ce

Dec(ke,Ce):

s ← π−1(k−1
e ⋆ Ce)

Parse s as N ′∥M ′

return M ′

TokenGen(ke, ke+1):

∆e+1 ← ke+1 · k−1
e

return ∆e+1

Upd(∆e+1,Ce):

Ce+1 ← ∆e+1 ⋆ Ce

return Ce+1
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Security requirements for the group action

Definition (weak pseudorandom group action [AFMP20])

(G , S , ⋆) is weak pseudorandom if an adversary cannot distinguish between pairs of the
form:

1 (si , g ⋆ si ) where si ← S and g ← G .

2 (si , ti ) where si , ti ← S .

Definition (weak unpredictable group action [AFMP20])

(G , S , ⋆) is weak unpredictable if, given pairs (si , g ⋆ si ) where si ← S and g ← G as well
as t ∈ S , an adversary cannot compute g ⋆ t.
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Security of GAINE and post-quantum instantiations

Theorem (Correctness and security of GAINE)

GAINE is
• correct if (G ,S , ⋆) is mappable (no need to be abelian),
• det-IND-UE-CPA secure if (G , S , ⋆) is weak pseudorandom,
• and can be made det-IND-UE-CCA secure if (G , S , ⋆) is weak unpredictable.
Both security proofs are provided in the ideal cipher model.

Multivariate or equivalence-based group actions: not weak pseudorandom.
For multivariate: the set S is a vector space and fg : s 7→ g ⋆ s for g ∈ G , s ∈ S is a linear
map ⇝ (G ,S , ⋆) cannot be weak pseudorandom without heavy restrictions on the number
of samples.

Isogeny-based group actions: not mappable, e.g. no known way to map a binary string to
a set element (e.g. an elliptic curve in some isogeny class).
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Triple Orbital Group Actions

Goal: circumvent the non-mappability of isogeny-based group actions.

Idea: instead of mapping the message to an elliptic curve, map it to a point on an elliptic
curve. Then, hide both of them using a secret isogeny.

The Triple Orbital Group Action (TOGA) structure involves:

1 Set T : oriented supersingular elliptic curves with level-N structure (order N subgroup).

2 Set S : pairs (oriented supersingular elliptic curve, point of order N on the curve).

3 ⋆G : standard isogeny group action (on oriented supersingular elliptic curves).

4 ⋆A: isogeny group action + image of a single point of order N under the isogeny.

5 ⋆H : standard scalar multiplication on points of an elliptic curve.
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Triple Orbital Group Action UE scheme (TOGA-UE)

: ⋆G
: ⋆H
: ⋆A

: s ∈ S

: t ∈ T
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Triple Orbital Group Action UE scheme (TOGA-UE)

: ⋆G
: ⋆H
: ⋆A

: s ∈ S

: t ∈ T

random starting point
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Triple Orbital Group Action UE scheme (TOGA-UE)

: ⋆G
: ⋆H
: ⋆A

: s ∈ S

: t ∈ T

λΨ(M) (⋆H)
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Triple Orbital Group Action UE scheme (TOGA-UE)

: ⋆G
: ⋆H
: ⋆A

: s ∈ S

: t ∈ T

k(⋆A)

ciphertext
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Triple Orbital Group Action UE scheme (TOGA-UE)

: ⋆G
: ⋆H
: ⋆A

: s ∈ S

: t ∈ T

∆(⋆A)

old ciphertext

µ(⋆H)

updated ciphertext
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Group actions requirements and security

Theorem (Security of TOGA-UE)

TOGA-UE is det-IND-UE-CPA secure if (A,S , ⋆A) is weak pseudorandom, e.g. if the
standard isogeny group action together with the image of a single point under the isogeny
is weak-pseudorandom.
The proof does not use the ideal cipher model.

However, TOGA-UE is malleable.

If c := k ⋆A (λΨ(M) ⋆H (Er ,Pr )) is an encryption of M with key (k , λ). Then,

c ′ := Ψ(M ′)Ψ(M)−1 ⋆H c = k ⋆A (λΨ(M ′) ⋆H (Er ,Pr ))

is an encryption of M ′ with key (k , λ).
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Recap and open questions

We give

1 A post-quantum IND-UE-CPA secure Updatable Encryption scheme from group actions.

2 Instantiations using isogeny-based group actions CSIDH and SCALLOP(-HD).

3 TOGA algebraic structure may be of independent interest to circumvent the
non-mappability of isogenies in other constructions.

4 Is it possible to make TOGA-UE CCA secure while retaining its efficiency?

Thank you!

Updatable Encryption from Group Actions Maxime Roméas (ANSSI) PQCrypto 2024, June 13th 17 / 17
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