

Updatable Encryption from Group Actions

Maxime Roméas, joint work with Antonin Leroux (DGA & IRMAR)

ANSSI, France

PQCrypto 2024, June 13th

- 1 Introduction to Updatable Encryption
- 2 Group Actions and Isogenies
- 3 Updatable Encryption from Group Actions

1. Introduction to Updatable Encryption

Key rotation on encrypted data

Key rotation on encrypted data

Question: How can the client efficiently update its key (and ciphertexts) while maintaining the confidentiality of its data?

Updatable Encryption from Group Actions

Updatable Encryption: Key rotation [BLMR13]

Updatable Encryption from Group Actions

Updatable Encryption syntax [BLMR13]

Definition

An updatable encryption scheme UE consists of the algorithms:

- **1** UE.Setup $(1^{\lambda}) \rightarrow pp$: Outputs public parameters.
- **2** UE.KeyGen(pp) $\rightarrow k_e$: Generates keys.
- **3** UE.Enc $(k, m) \rightarrow c$: Encrypts a plaintext.
- **4** UE.Dec $(k, c) \rightarrow m$: Decrypts a ciphertext.
- **5** UE.TokenGen $(k_e, k_{e+1}) \rightarrow \Delta_{e+1}$: Generates a token from the keys of epochs e and e + 1.
- **6** UE.Upd $(\Delta_{e+1}, c_e) \rightarrow c_{e+1}$: Updates a ciphertext from epoch e to epoch e + 1.

A UE scheme operates in **epochs** where an epoch is an index incremented with each key update.

Updatable Encryption from Group Actions

UE security: confidentiality game

IND-UE-{CPA/CCA} security notion of [BDGJ20]:

Adversary chooses message m and ciphertext c. Challenge $\tilde{c} := \text{Enc}_k(m)$ or $\tilde{c} := \text{Upd}_{\Delta}(c)$.

Goal: Distinguish between the two cases while having oracle access to UE's functionalities (encryption, update, key rotation, key and token corruption and decryption in the CCA case).

Construction of a UE scheme in the group action framework:

- **1** post-quantum and IND-UE-CPA secure.
- 2 first post-quantum UE scheme not based on lattices.
- instantiation possible from your favourite isogeny-based group action: CSIDH or SCALLOP(-HD).
- **4** supports an unbounded number of updates.
- **5** efficient in terms of group action computations: only 1 group action computation needed per encryption, decryption or update.

2. Group Actions and Isogenies

Definition (Group Action)

A group G acts on a set S if there exists $\star: G \times S \to S$ such that:

- 1 (Identity) If 1_G is the identity element of G, then $\forall s \in S$, $1_G \star s = s$.
- **2** (Compatibility) $\forall g, h \in G, \forall s \in S, (gh) \star s = g \star (h \star s).$

Example

The multiplicative group \mathbb{Z}_p^* acts on a cyclic group S of order p by exponentiation. For $a \in \mathbb{Z}_p^*$ and $s \in S$, $a \star s := s^a$.

Elliptic curves and isogenies

Elliptic Curve over K:

$$y^2 = x^3 + ax + b$$

E(K) is an additive group. Scalar multiplication [n] is the analog of exponentiation in this group.

Isogeny $\varphi: E_1 \to E_2$: non-constant morphism sending 0_{E_1} to 0_{E_2} .

Imaginary quadratic order \mathfrak{O} , *e.g.* $\mathbb{Z}[i]$ or $\mathbb{Z}[\sqrt{-p}]$.

One can find a set of elliptic curves S (\mathfrak{O} -oriented supersingular curves) such that we get a group action:

$$\mathrm{Cl}(\mathfrak{O}) \times S \to S$$

3. Updatable Encryption from Group Actions

The SHINE scheme of [BDGJ20]

S cyclic group of prime order p and $\pi: \{0,1\}^m \to S$ efficient and invertible map. KeyGen(pp): $Dec(k_e, C_e)$: TokenGen (k_{e}, k_{e+1}) : $k \leftarrow \mathbb{Z}_p^*$ $\Delta_{e+1} \leftarrow k_{e+1}/k_e$ $s \leftarrow \pi^{-1}(C_{\mathrm{e}}^{1/k_{\mathrm{e}}})$ return k return Δ_{e+1} Parse s as $N' \parallel M'$ $Enc(k_e, M)$: return M' $Upd(\Delta_{e+1}, C_e)$: $N \leftarrow N$ $C_{\mathrm{e}+1} \leftarrow C_{\mathrm{e}}^{\Delta_{\mathrm{e}+1}}$ $C_{\text{e}} \leftarrow (\pi(N \| M))^{k_{\text{e}}}$ return C_{e+1} return C_a

The SHINE scheme of [BDGJ20]

S cyclic group of prime	order p and $\pi: \{0,1\}^m o S$ effic	ient and invertible map.
$ \begin{split} \frac{KeyGen(pp):}{k \leftarrow \mathbb{Z}_p^*} \\ \mathbf{return} \ k \\ \frac{Enc(k_{e}, M):}{N \leftarrow \mathcal{N}} \\ C_{e} \leftarrow (\pi(N \ M))^{k_{e}} \\ \mathbf{return} \ C_{e} \end{split} $	$rac{ ext{Dec}(k_{ ext{e}}, C_{ ext{e}}):}{s \leftarrow \pi^{-1}(C_{ ext{e}}^{1/k_{ ext{e}}})}$ Parse s as $N' \ M'$ return M'	$ \begin{array}{l} \displaystyle \frac{TokenGen(k_{e},k_{e+1}):}{\Delta_{e+1}\leftarrow k_{e+1}/k_{e}} \\ \mathbf{return} \ \Delta_{e+1} \\ \\ \displaystyle \frac{Upd(\Delta_{e+1},C_{e}):}{C_{e+1}\leftarrow C_{e}^{\Delta_{e+1}}} \\ \mathbf{return} \ C_{e+1} \end{array} $
Theorem (BDGJ20)		
 SHINE is det-IND-U SHINE can be made Both proofs are provide 	E-CPA secure under DDH. e det-IND-UE-CCA secure under C ed in the ideal cipher model.	DH.

GAINE: first generalization to group actions

 (G, S, \star) group action and $\pi : \{0, 1\}^m \to S$ efficient and invertible map. We say that such a group action is **mappable**.

We introduce the GAINE (Group Action Ideal-cipher Nonce-based Encryption) scheme.

TokenGen (k_{e}, k_{e+1}) : KeyGen(pp): $Dec(k_e, C_e)$: $k \leftarrow G$ $s \leftarrow \pi^{-1}(k_{c}^{-1} \star C_{c})$ $\Delta_{e+1} \leftarrow k_{e+1} \cdot k_e^{-1}$ return k Parse s as $N' \parallel M'$ return Δ_{e+1} $Enc(k_e, M)$: return M' $Upd(\Delta_{e+1}, C_e)$: $N \leftarrow N$ $C_{e+1} \leftarrow \Delta_{e+1} \star C_{e}$ $C_e \leftarrow k_e \star \pi(N \| M)$ return C_{e+1} return C_e

Security requirements for the group action

Definition (weak pseudorandom group action [AFMP20])

 (G, S, \star) is weak pseudorandom if an adversary cannot distinguish between pairs of the form:

1
$$(s_i, g \star s_i)$$
 where $s_i \leftarrow S$ and $g \leftarrow G$.

2 (s_i, t_i) where $s_i, t_i \leftarrow S$.

Definition (weak unpredictable group action [AFMP20])

 (G, S, \star) is weak unpredictable if, given pairs $(s_i, g \star s_i)$ where $s_i \leftarrow S$ and $g \leftarrow G$ as well as $t \in S$, an adversary cannot compute $g \star t$.

Security of GAINE and post-quantum instantiations

Theorem (Correctness and security of GAINE)

GAINE is

- correct if (G, S, \star) is mappable (no need to be abelian),
- det-IND-UE-CPA secure if (G, S, \star) is weak pseudorandom,
- and can be made det-IND-UE-CCA secure if (G, S, \star) is weak unpredictable.

Both security proofs are provided in the ideal cipher model.

Security of GAINE and post-quantum instantiations

Theorem (Correctness and security of GAINE)

GAINE is

- correct if (G, S, \star) is mappable (no need to be abelian),
- det-IND-UE-CPA secure if (G, S, \star) is weak pseudorandom,
- and can be made det-IND-UE-CCA secure if (G, S, \star) is weak unpredictable.

Both security proofs are provided in the ideal cipher model.

Multivariate or **equivalence**-based group actions: **not weak pseudorandom**. For multivariate: the set *S* is a **vector space** and $f_g : s \mapsto g \star s$ for $g \in G, s \in S$ is a **linear map** $\rightsquigarrow (G, S, \star)$ cannot be weak pseudorandom without heavy restrictions on the number of samples. Security of GAINE and post-quantum instantiations

Theorem (Correctness and security of GAINE)

GAINE is

- correct if (G, S, \star) is mappable (no need to be abelian),
- det-IND-UE-CPA secure if (G, S, \star) is weak pseudorandom,
- and can be made det-IND-UE-CCA secure if (G, S, \star) is weak unpredictable.

Both security proofs are provided in the ideal cipher model.

Multivariate or equivalence-based group actions: not weak pseudorandom.

For multivariate: the set S is a **vector space** and $f_g : s \mapsto g \star s$ for $g \in G, s \in S$ is a **linear** map $\rightsquigarrow (G, S, \star)$ cannot be weak pseudorandom without heavy restrictions on the number of samples.

Isogeny-based group actions: **not mappable**, *e.g.* no known way to map a binary string to a set element (e.g. an elliptic curve in some isogeny class).

Triple Orbital Group Actions

Goal: circumvent the non-mappability of isogeny-based group actions.

Triple Orbital Group Actions

Goal: circumvent the non-mappability of isogeny-based group actions.

Idea: instead of mapping the message to an elliptic curve, map it to a point on an elliptic curve. Then, hide both of them using a secret isogeny.

Triple Orbital Group Actions

Goal: circumvent the non-mappability of isogeny-based group actions.

Idea: instead of mapping the message to an elliptic curve, map it to a point on an elliptic curve. Then, hide both of them using a secret isogeny.

The Triple Orbital Group Action (TOGA) structure involves:

- **I** Set T: oriented supersingular elliptic curves with level-N structure (order N subgroup).
- **2** Set S: pairs (oriented supersingular elliptic curve, point of order N on the curve).
- 3 \star_G : standard isogeny group action (on oriented supersingular elliptic curves).
- 4 \star_A : isogeny group action + image of a **single** point of order N under the isogeny.
- **5** \star_H : standard scalar multiplication on points of an elliptic curve.

Updatable Encryption from Group Actions

Updatable Encryption from Group Actions

Updatable Encryption from Group Actions

Group actions requirements and security

Theorem (Security of TOGA-UE)

TOGA-UE is det-IND-UE-CPA secure if (A, S, \star_A) is weak pseudorandom, e.g. if the standard isogeny group action together with the image of a single point under the isogeny is weak-pseudorandom.

The proof does **not** use the ideal cipher model.

However, TOGA-UE is malleable.

If $c := k \star_A (\lambda \Psi(M) \star_H (E_r, P_r))$ is an encryption of M with key (k, λ) . Then,

$$c' := \Psi(M')\Psi(M)^{-1} \star_H c = k \star_A (\lambda \Psi(M') \star_H (E_r, P_r))$$

is an encryption of M' with key (k, λ) .

Recap and open questions

We give

- **1** A post-quantum IND-UE-CPA secure Updatable Encryption scheme from group actions.
- **2** Instantiations using isogeny-based group actions CSIDH and SCALLOP(-HD).
- **3** TOGA algebraic structure may be of independent interest to circumvent the non-mappability of isogenies in other constructions.
- 4 Is it possible to make TOGA-UE CCA secure while retaining its efficiency?

Recap and open questions

We give

- **1** A post-quantum IND-UE-CPA secure Updatable Encryption scheme from group actions.
- **2** Instantiations using isogeny-based group actions CSIDH and SCALLOP(-HD).
- **3** TOGA algebraic structure may be of independent interest to circumvent the non-mappability of isogenies in other constructions.
- 4 Is it possible to make TOGA-UE CCA secure while retaining its efficiency?

Thank you!