Impossible Maths I

Sheet 3 — MT18

For Tutors Only — Not For Distribution

First topic questions

Section A

1. (a) Define what it means for a finite subset of a vector space to be *linearly independent*, a spanning set, and a basis.

State the Steinitz Exchange Lemma.

Prove that if a vector space V has a finite basis, then every linearly independent subset of V may be extended to a basis.

Prove that any two finite bases of a vector space have the same number of elements. Define the *dimension* of a finite-dimensional vector space.

(b) Let V be a finite-dimensional vector space.

Suppose that X and Y are subspaces of V.

Prove that

$$\dim(X+Y) + \dim(X \cap Y) = \dim X + \dim Y.$$

(c) Suppose V is a finite-dimensional vector space, and $T:V\to V$ is a linear transformation. Suppose that for all $v\in V$, if T(T(v))=0, then T(v)=0. Prove that $V=\ker T\oplus\operatorname{im} T$, and that the restriction, $T\operatorname{im} T$, of T to $\operatorname{im} T$ is a bijection from $\operatorname{im} T$ to itself.

[You may assume the Rank-Nullity Theorem.]

[If V and W are vector spaces, $T: V \to W$ is a linear transformation, and U is a subspace of V, then we define the restriction $T \upharpoonright U$ of T to U to be a linear transformation from U to W such that for all $u \in U$, $(T \upharpoonright U)(u) = T(u)$.]

Solution: The solution would go here

Impossible Maths I: Sheet 3 (Tutors Only) — MT18

- 2. (a) Define an *elementary row operation*, and say what it means for a matrix to be in *row-reduced echelon form*. Describe how any matrix may be reduced to row-reduced echelon form.
 - (b) For which values of λ is the following system of equations solvable? In each case calculate the solutions.

$$x + 2y - 3z = 5$$

 $x - 2y - 5z = 7$
 $2x + 8y + (-\lambda - 6)z = 8$
 $x - 2y + (\lambda - 3)z = \lambda^2 + 3$

Solution: The solution would go here

Mathematical Institute, University of Oxford Joe Bloggs: joe.bloggs@maths.ox.ac.uk

Section B

- 3. (a) (i) Define what it means to say that a square matrix with real entries is diagonal-isable over \mathbb{R} .
 - (ii) Show that if A is a square matrix with real entries and \mathbf{u} and \mathbf{v} are eigenvalues of A corresponding to different eigenvalues, then \mathbf{u} and \mathbf{v} are linearly independent.
 - (b) (i) Consider the 2×2 real square matrix

$$A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}.$$

Show that A has at least one real eigenvalue; and that if $a \neq d$ or $b \neq 0$, then it has two distinct real eigenvalues.

Deduce that A is diagonalisable.

(ii) Determine the values of α and β for which the real matrix

$$A = \begin{pmatrix} 1 & \alpha \\ \beta & 1 \end{pmatrix}$$

is diagonalisable.

(iii) Determine when the 2×2 real matrix

$$A = \begin{pmatrix} a & b \\ c & a \end{pmatrix}$$

is diagonalisable.

Solution: The solution would go here

Section C

- 4. Let \mathbf{u} , \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^3 .
 - (a) (i) Prove that \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly independent if and only if $\mathbf{u}.(\mathbf{v} \wedge \mathbf{w}) \neq \mathbf{0}$.
 - (ii) Establish the identity

$$\mathbf{u} \wedge (\mathbf{w} \wedge \mathbf{v}) = (\mathbf{u}.\mathbf{v})\mathbf{w} - (\mathbf{u}.\mathbf{w})\mathbf{v}.$$

- (b) Prove that \mathbf{u} , \mathbf{v} and \mathbf{w} are linearly independent if and only if $\mathbf{v} \wedge \mathbf{w}$, $\mathbf{w} \wedge \mathbf{u}$, and $\mathbf{u} \wedge \mathbf{v}$ are linearly independent.
- (c) Suppose that \mathbf{u} , \mathbf{v} and \mathbf{w} are linearly independent, and that

$$\mathbf{r} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}.$$

Find coefficients α , β and γ such that

$$\mathbf{r} = \alpha \mathbf{v} \wedge \mathbf{w} + \beta \mathbf{w} \wedge \mathbf{u} + \gamma \mathbf{u} \wedge \mathbf{v}.$$

Solution: The solution would go here

Mathematical Institute, University of Oxford Joe Bloggs: joe.bloggs@maths.ox.ac.uk