Impossible Maths I Sheet 3 - MT18
 First topic questions

1. (a) Define what it means for a finite subset of a vector space to be linearly independent, a spanning set, and a basis.

State the Steinitz Exchange Lemma.
Prove that if a vector space V has a finite basis, then every linearly independent subset of V may be extended to a basis.

Prove that any two finite bases of a vector space have the same number of elements. Define the dimension of a finite-dimensional vector space.
(b) Let V be a finite-dimensional vector space.

Suppose that X and Y are subspaces of V.
Prove that

$$
\operatorname{dim}(X+Y)+\operatorname{dim}(X \cap Y)=\operatorname{dim} X+\operatorname{dim} Y
$$

(c) Suppose V is a finite-dimensional vector space, and $T: V \rightarrow V$ is a linear transformation. Suppose that for all $v \in V$, if $T(T(v))=0$, then $T(v)=0$. Prove that $V=\operatorname{ker} T \oplus \operatorname{im} T$, and that the restriction, $T \upharpoonright \operatorname{im} T$, of T to $\operatorname{im} T$ is a bijection from im T to itself.
[You may assume the Rank-Nullity Theorem.]
[If V and W are vector spaces, $T: V \rightarrow W$ is a linear transformation, and U is a subspace of V, then we define the restriction $T \upharpoonright U$ of T to U to be a linear transformation from U to W such that for all $u \in U,(T \upharpoonright U)(u)=T(u)$.]
2. (a) Define an elementary row operation, and say what it means for a matrix to be in row-reduced echelon form. Describe how any matrix may be reduced to row-reduced echelon form.
(b) For which values of λ is the following system of equations solvable? In each case calculate the solutions.

$$
\begin{aligned}
& x+2 y-3 z= \\
& x-2 y-5 z= \\
& 2 x+8 y+(-\lambda-6) z= \\
& 2 y+(\lambda-3) z= \\
& x-2 y+3
\end{aligned}
$$

3. (a) (i) Define what it means to say that a square matrix with real entries is diagonalisable over \mathbb{R}.
(ii) Show that if A is a square matrix with real entries and \mathbf{u} and \mathbf{v} are eigenvalues of A corresponding to different eigenvalues, then \mathbf{u} and \mathbf{v} are linearly independent.
(b) (i) Consider the 2×2 real square matrix

$$
A=\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right)
$$

Show that A has at least one real eigenvalue; and that if $a \neq d$ or $b \neq 0$, then it has two distinct real eigenvalues.
Deduce that A is diagonalisable.
(ii) Determine the values of α and β for which the real matrix

$$
A=\left(\begin{array}{ll}
1 & \alpha \\
\beta & 1
\end{array}\right)
$$

is diagonalisable.
(iii) Determine when the 2×2 real matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right)
$$

is diagonalisable.
4. Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^{3}.
(a) (i) Prove that \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly independent if and only if $\mathbf{u} .(\mathbf{v} \wedge \mathbf{w}) \neq \mathbf{0}$.
(ii) Establish the identity

$$
\mathbf{u} \wedge(\mathbf{w} \wedge \mathbf{v})=(\mathbf{u} . \mathbf{v}) \mathbf{w}-(\mathbf{u} . \mathbf{w}) \mathbf{v}
$$

(b) Prove that \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly independent if and only if $\mathbf{v} \wedge \mathbf{w}, \mathbf{w} \wedge \mathbf{u}$, and $\mathbf{u} \wedge \mathbf{v}$ are linearly independent.
(c) Suppose that \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly independent, and that

$$
\mathbf{r}=a \mathbf{u}+b \mathbf{v}+c \mathbf{w}
$$

Find coefficients α, β and γ such that

$$
\mathbf{r}=\alpha \mathbf{v} \wedge \mathbf{w}+\beta \mathbf{w} \wedge \mathbf{u}+\gamma \mathbf{u} \wedge \mathbf{v}
$$

