PROBLEM SHEET 1

1.1 Find the radius and centre of the circle described by the equation

$$
x^{2}+y^{2}-2 x-4 y+1=0
$$

by writing it in the form $(x-a)^{2}+(y-b)^{2}=c^{2}$ for suitable a, b and c.
1.2 Find the equation of the line perpendicular to $y=3 x$ passing through the point $(3,9)$.
1.3 Given

$$
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \quad \text { and } \quad \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B
$$

show that

$$
\cos A \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)] \quad \text { and } \quad \sin ^{2} A=\frac{1}{2}[1-\cos 2 A] .
$$

1.4 Show that

$$
4 \cos (\alpha t)+3 \sin (\alpha t)=5 \cos (\alpha t+\phi)
$$

where $\phi=\arctan (-3 / 4)$.
1.5 Show that, for $-1 \leq x \leq 1$,

$$
\cos \left(\sin ^{-1} x\right)=\sqrt{1-x^{2}} .
$$

1.6 Given

$\sinh (A \pm B)=\sinh A \cosh B \pm \cosh A \sinh B \quad$ and $\quad \cosh (A \pm B)=\cosh A \cosh B \pm \sinh A \sinh B$, show that

$$
\cosh A \cosh B=\frac{1}{2}[\cosh (A+B)+\cosh (A-B)] \quad \text { and } \quad \sinh ^{2} A=\frac{1}{2}[\cosh 2 A-1] .
$$

1.7 Given that

$$
\sinh x=\frac{1}{2}\left[e^{x}-e^{-x}\right],
$$

show that

$$
\sinh ^{-1} x=\ln \left[x+\sqrt{1+x^{2}}\right] .
$$

1.8 Express

$$
\frac{x}{(x-1)(x-2)}
$$

in partial fractions.
1.9 If $a_{n}=\frac{1}{n}$, find $\sum_{i=1}^{5} a_{n}$ as a fraction.
1.10 If $S=\sum_{i=0}^{N} x^{i}$, show that $x S=\sum_{i=1}^{N+1} x^{i}$. Hence show that $S-x S=1-x^{N+1}$ and therefore that

$$
S=\frac{1-x^{N+1}}{1-x}
$$

