$\mathbf{2.1}$ Given that

$$\sinh x = \frac{1}{2}[e^x - e^{-x}]$$

show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \cosh x.$$

2.2 Given that

$$\cosh x = \frac{1}{2}[e^x + e^{-x}],$$

show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh x.$$

2.3 Let n be a positive integer. Show that

$$\frac{\mathrm{d}^n(x^n)}{\mathrm{d}x^n} = n!$$

2.4 If $y = \ln x$, show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x};$$
 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{-1}{x^2};$ $\frac{\mathrm{d}^{100} y}{\mathrm{d}x^{100}} = \frac{-99!}{x^{100}}$

2.5 Find the equation of the tangent to the curve $y = x^2$ at (1, 1).

2.6 Find the slope of the curve $y = 4x + e^x$ at (0, 1).

2.7 Find the angle of inclination of the tangent to the curve $y = x^2 + x + 1$ at the point (0, 1).

2.8 The displacement y(t) metres of a body at time t seconds $(t \ge 0)$ is given by $y(t) = t - \sin t$. At what times is the body at rest?

2.9 A particle has displacement y(t) metres at time t seconds given by $y(t) = 3t^3 + 4t + 1$. Find its acceleration at time t = 4 seconds.

2.10 If

$$y = \sum_{n=0}^{N} a_n x^n$$

show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \sum_{n=1}^{N} n a_n x^{n-1}.$$