PROBLEM SHEET 2

2.1 Given that

$$
\sinh x=\frac{1}{2}\left[e^{x}-e^{-x}\right]
$$

show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\cosh x .
$$

2.2 Given that

$$
\cosh x=\frac{1}{2}\left[e^{x}+e^{-x}\right]
$$

show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\sinh x
$$

2.3 Let n be a positive integer. Show that

$$
\frac{\mathrm{d}^{n}\left(x^{n}\right)}{\mathrm{d} x^{n}}=n!
$$

2.4 If $y=\ln x$, show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x} ; \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{-1}{x^{2}} ; \quad \frac{\mathrm{d}^{100} y}{\mathrm{~d} x^{100}}=\frac{-99!}{x^{100}}
$$

2.5 Find the equation of the tangent to the curve $y=x^{2}$ at $(1,1)$.
2.6 Find the slope of the curve $y=4 x+e^{x}$ at $(0,1)$.
2.7 Find the angle of inclination of the tangent to the curve $y=x^{2}+x+1$ at the point $(0,1)$.
2.8 The displacement $y(t)$ metres of a body at time t seconds $(t \geq 0)$ is given by $y(t)=t-\sin t$. At what times is the body at rest?
2.9 A particle has displacement $y(t)$ metres at time t seconds given by $y(t)=3 t^{3}+4 t+1$. Find its acceleration at time $t=4$ seconds.
2.10 If

$$
y=\sum_{n=0}^{N} a_{n} x^{n}
$$

show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\sum_{n=1}^{N} n a_{n} x^{n-1}
$$

