PROBLEM SHEET 4

4.1 Given f(x - ct), where x and c are constant, show that

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}f(x-ct) = c^2 f''(x-ct),$$

and calculate this expression when $f(u) = \sin u$.

4.2 Classify the stationary point of $y = x^{-2} \ln x$, where x > 0.

4.3 Classify the stationary points of $y(x) = x^2 - 3x + 2$.

4.4 The numbers x and y are subject to the constraint $x + y = \pi$. Find the values of x and y for which $\cos(x)\sin(y)$ takes its minimum value.

4.5 Sketch the graph of

$$y = \frac{x}{1+x^2}.$$

4.6 Sketch the graph of

$$y(x) = \tan(2x)$$
 for $-\frac{3\pi}{4} \le x \le \frac{3\pi}{4}$.

4.7 Sketch the graph of $y = x \ln x$ for x > 0.

4.8 Sketch the graph of

$$y = \frac{x^3}{2x - 1}$$

showing clearly on your sketch any asymptotes.

4.9 Sketch the graph of

$$y = x\cos(3x)$$
 for $0 \le x \le 2\pi$.