PROBLEM SHEET 5

5.1 Verify the following Taylor expansions (taking the ranges of validity for granted).
(a)

$$
e^{x}=1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots+\frac{1}{n!} x^{n}+\ldots \text { valid for any } x .
$$

(b)

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\ldots \text { valid for any } x .
$$

(c)

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\ldots \text { valid for any } x .
$$

(d) Let α be a constant.

$$
(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3}+\ldots \text { valid for }-1<x<1
$$

(e)

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+\frac{(-1)^{n-1} x^{n}}{n}+\ldots \text { valid for }-1<x \leq 1
$$

5.2 Obtain a four-term Taylor polynomial approximation valid near $x=0$ for each of the following.
(a) $(1+x)^{1 / 2}$,
(b) $\sin (2 x)$,
(c) $\ln (1+3 x)$.

