6.1 Reduce to standard form

$$
\text { (a) } \frac{3+i}{4-i}, \quad \text { and } \quad(b) \quad(1+i)^{5}
$$

6.2 Prove

$$
\text { (a) }\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|, \quad \text { and (b) } \quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \text { when } z_{2} \neq 0 \text {. }
$$

6.3 Given that $e^{i \theta}=\cos \theta+i \sin \theta$, prove that

$$
\cos (A+B)=\cos A \cos B-\sin A \sin B
$$

6.4 Let $z=1+i$. Find the following complex numbers in standard form and plot their corresponding points in the Argand diagram:-

$$
\text { (a) } \bar{z}^{2}, \quad \text { and }(b) \frac{z}{\bar{z}} .
$$

6.5 Find the modulus and principal arguments of (a) $-2+2 i$, (b) $3+4 i$.
6.6 Find all the complex roots of
(a) $\cosh z=1$;
(b) $\sinh z=1$;
(c) $e^{z}=-1$;
(d) $\cos z=\sqrt{2}$.
6.7 Show that the mapping

$$
w=z+\frac{c}{z},
$$

where $z=x+i y, w=u+i v$ and c is a real number, maps the circle $|z|=1$ in the z plane into an ellipse in the w plane and find its equation.
6.8 Show that

$$
\cos ^{6} \theta=\frac{1}{32}(\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10)
$$

