PROBLEM SHEET 6

6.1 Reduce to standard form

(a)
$$\frac{3+i}{4-i}$$
, and (b) $(1+i)^5$.

6.2 Prove

(a)
$$|z_1 z_2| = |z_1| |z_2|$$
, and (b) $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$ when $z_2 \neq 0$.

6.3 Given that $e^{i\theta} = \cos \theta + i \sin \theta$, prove that

$$\cos(A+B) = \cos A \cos B - \sin A \sin B.$$

6.4 Let z = 1+i. Find the following complex numbers in standard form and plot their corresponding points in the Argand diagram:-

(a)
$$\bar{z}^2$$
, and (b) $\frac{z}{\bar{z}}$.

6.5 Find the modulus and principal arguments of (a) -2 + 2i, (b) 3 + 4i.

6.6 Find all the complex roots of

- (a) $\cosh z = 1;$ (b) $\sinh z = 1;$ (c) $e^{z} = -1;$
- (d) $\cos z = \sqrt{2}$.

6.7 Show that the mapping

$$w = z + \frac{c}{z},$$

where z = x + iy, w = u + iv and c is a real number, maps the circle |z| = 1 in the z plane into an ellipse in the w plane and find its equation.

6.8 Show that

$$\cos^{6}\theta = \frac{1}{32}(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10).$$