7.1 The matrix $A=\left(a_{i j}\right)$ is given by

$$
A=\left(\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 0 & 1 \\
2 & -2 & 4 \\
1 & 5 & -3
\end{array}\right)
$$

Identify the elements a_{13} and a_{31}.
7.2 Given that

$$
A=\left(\begin{array}{lll}
1 & 3 & 0 \\
2 & 1 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & 0 \\
2 & 1 \\
-1 & -1
\end{array}\right), \quad C=\left(\begin{array}{rr}
2 & 1 \\
-1 & 1 \\
-0 & 1
\end{array}\right)
$$

verify the distributive law $A(B+C)=A B+A C$ for the three matrices.
7.3 Let

$$
A=\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
-2 & -1 \\
4 & 2
\end{array}\right) .
$$

Show that $A B=0$, but that $B A \neq 0$.
7.4 A general $n \times n$ matrix is given by $A=\left(a_{i j}\right)$. Show that $A+A^{T}$ is a symmetric matrix, and that $A-A^{T}$ is skew-symmetric.

Express the matrix

$$
A=\left(\begin{array}{rrr}
2 & 1 & 3 \\
-2 & 0 & 1 \\
3 & 1 & 2
\end{array}\right)
$$

as the sum of a symmetric matrix and a skew-symmetric matrix.
7.5 Let the matrix

$$
A=\left(\begin{array}{rrr}
1 & 0 & 0 \\
a & -1 & 0 \\
b & c & 1
\end{array}\right)
$$

Find A^{2}. For what relation between a, b, and c is $A^{2}=I$ (the unit matrix)? In this case, what is the inverse matrix of A ? What is the inverse matrix of $A^{2 n-1}$ (n a positive integer)?
7.6 Using the rule for inverses of 2×2 matrices, write down the inverse of

$$
\left(\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right)
$$

7.7 If A and B are both $n \times n$ matrices with A non-singular, show that

$$
\left(A^{-1} B A\right)^{2}=A^{-1} B^{2} A
$$

