PROBLEM SHEET 9

9.1 The figure $A B C D$ has vertices at $(0,0),(2,0),(3,1)$ and $(1,1)$.

Find the vectors $\overrightarrow{A C}$ and $\overrightarrow{B D}$. Find $\overrightarrow{A C} \cdot \overrightarrow{B D}$.
Hence show that the angles between the diagonals of $A B C D$ have cosine $-1 / \sqrt{5}$.
9.2 Show that the vectors $\mathbf{a}=\mathbf{i}+3 \mathbf{j}+4 \mathbf{k}$ and $\mathbf{b}=-2 \mathbf{i}+6 \mathbf{j}-4 \mathbf{k}$ are perpendicular.

Obtain any vector $\mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}$ which is perpendicular to both \mathbf{a} and \mathbf{b}.
9.3 Find the value of λ such that the vectors $(\lambda, 2,-1)$ and $(1,1,-3 \lambda)$ are perpendicular.
9.4 Find a constant vector parallel to the line given parametrically by

$$
x=1-\lambda, y=2+3 \lambda, z=1+\lambda .
$$

9.5 A circular cone has its vertex at the origin and its axis in the direction of the unit vector $\hat{\mathbf{a}}$. The half-angle at the vertex is α. Show that the position vector \mathbf{r} of a general point on its surface satisfies the equation

$$
\hat{\mathbf{a}} \cdot \mathbf{r}=|\mathbf{r}| \cos \alpha
$$

Obtain the cartesian equation when $\hat{\mathbf{a}}=(2 / 7,-3 / 7,-6 / 7)$ and $\alpha=60^{\circ}$.

