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1. For ALL APPLICANTS.

For each part of the question on pages 3—7 you will be given four possible answers,
just one of which is correct. Indicate for each part A—J which answer (a), (b), (c),
or (d) you think is correct with a tick (X) in the corresponding column in the table
below. Please show any rough working in the space provided between the parts.

(a) (b) (c) (d)
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A. The function
= 2 3 6 2 + 5 7

has

(a) no stationary points;
(b) one stationary point;
(c) two stationary points;
(d) three stationary points.

B. Which is the smallest of these values?

(a) log10 (b)
p
log10 (

2) (c)
�

1

log10

¶3
(d)

1

log10
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C. The simultaneous equations in ,

(cos ) (sin ) = 2

(sin ) + (cos ) = 1

are solvable

(a) for all values of in the range 0 6 2 ;
(b) except for one value of in the range 0 6 2 ;
(c) except for two values of in the range 0 6 2 ;
(d) except for three values of in the range 0 6 2 .

D. When
1 + 3 + 5 2 + 7 3 + · · ·+ 99 49

is divided by 1 the remainder is

(a) 2000 (b) 2500 (c) 3000 (d) 3500
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E. The highest power of in

½h¡
2 6 + 7

¢3
+
¡
3 8 12

¢4i5
+
h¡
3 5 12 2

¢5
+
¡

7 + 6
¢4i6¾3

is
(a) 424 (b) 450 (c) 500 (d) 504

F. If the trapezium rule is used to estimate the integral
Z 1

0

( ) d

by splitting the interval 0 6 6 1 into 10 intervals then an overestimate of the integral
is produced. It follows that

(a) the trapezium rule with 10 intervals underestimates
R 1
0
2 ( ) d ;

(b) the trapezium rule with 10 intervals underestimates
R 1
0
( ( ) 1) d ;

(c) the trapezium rule with 10 intervals underestimates
R 2
1
( 1) d ;

(d) the trapezium rule with 10 intervals underestimates
R 1
0
(1 ( )) d
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G. Which of the graphs below is a sketch of

=
1

4 2 5
?

x

y

x

y

(a) (b)

x
y

x
y

(c) (d)

H. The equation
9 3 +1 =

has one or more real solutions precisely when

(a) > 9 4 (b) 0 (c) 6 1 (d) > 5 8
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I. The function ( ) is de�ned for positive integers by

( ) = sum of the digits of .

For example, (723) = 7 + 2 + 3 = 12 The sum

(1) + (2) + (3) + · · ·+ (99)

equals
(a) 746 (b) 862 (c) 900 (d) 924

J. In the range 0 6 2 the equation

(3 + cos )2 = 4 2 sin8

has

(a) 0 solutions (b) 1 solution (c) 2 solutions (d) 3 solutions
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2. For ALL APPLICANTS.

(i) Find a pair of positive integers, 1 and 1 that solve the equation

( 1)
2 2 ( 1)

2 = 1

(ii) Given integers we de�ne two sequences 1 2 3 and 1 2 3 by setting

+1 = 3 + 4 +1 = + for > 1

Find positive values for such that

( +1)
2 2 ( +1)

2 = ( )2 2 ( )2

(iii) Find a pair of integers which satisfy 2 2 2 = 1 such that 50

(iv) (Using the values of and found in part (ii)) what is the approximate value of
as increases?
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3.

ForAPPLICANTS IN

MATHEMATICS
MATHEMATICS & STATISTICS
MATHEMATICS & PHILOSOPHY
MATHEMATICS & COMPUTER SCIENCE

ONLY.

Computer Science applicants should turn to page 14.

(i) The graph = ( ) of a certain function has been plotted below.

x

y

On the next three pairs of axes (A), (B), (C) are graphs of

= ( ) ( 1) ( )

in some order. Say which axes correspond to which graphs.

x

y

(A)

x

y

(B)

x

y

(C)

(ii) Sketch, on the axes opposite, graphs of both of the following functions

= 2
2

and = 22
2

Carefully label any stationary points.

(iii) Let be a real number and de�ne the following integral

( ) =

Z 1

0

2 ( )2 d

State the value(s) of for which ( ) is largest. Brie�y explain your reasoning.
[Note you are not being asked to calculate this maximum value.]

10



6

-

p p p

p p p

p

p

p

p

p

11 Turn Over



4.

For APPLICANTS IN
MATHEMATICS
MATHEMATICS & STATISTICS
MATHEMATICS & PHILOSOPHY

ONLY.

Mathematics & Computer Science and Computer Science applicants should turn to
page 14.

C

p

q

P

Q

O x

y

Let and be positive real numbers. Let denote the point ( 0) and denote the
point (0 )

(i) Show that the equation of the circle which passes through , and the origin
is

2 + 2 = 0

Find the centre and area of .

(ii) Show that
area of circle

area of triangle
>

(iii) Find the angles and if

area of circle
area of triangle

= 2
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5. For ALL APPLICANTS.

The Millennium school has 1000 students and 1000 student lockers. The lockers are in
a line in a long corridor and are numbered from 1 to 1000.

Initially all the lockers are closed (but unlocked).

The �rst student walks along the corridor and opens every locker.

The second student then walks along the corridor and closes every second locker, i.e.
closes lockers 2, 4, 6, etc. At that point there are 500 lockers that are open and 500 that
are closed.

The third student then walks along the corridor, changing the state of every third locker.
Thus s/he closes locker 3 (which had been left open by the �rst student), opens locker
6 (closed by the second student), closes locker 9, etc.

All the remaining students now walk by in order, with the th student changing the
state of every th locker, and this continues until all 1000 students have walked along
the corridor.

(i) How many lockers are closed immediately after the third student has walked along
the corridor? Explain your reasoning.

(ii) How many lockers are closed immediately after the fourth student has walked along
the corridor? Explain your reasoning.

(iii) At the end (after all 1000 students have passed), what is the state of locker 100?
Explain your reasoning.

(iv) After the hundredth student has walked along the corridor, what is the state of
locker 1000? Explain your reasoning.
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6.

ForAPPLICANTS IN
½
COMPUTER SCIENCE
MATHEMATICS & COMPUTER SCIENCE

¾
ONLY.

(i) A, B and C are three people. One of them is a liar who always tells lies, another is
a saint who always tells the truth, and the third is a switcher who sometimes tells the
truth and sometimes lies. They make the following statements:

A: I am the liar.
B: A is the liar.
C: I am not the liar.

Who is the liar among A, B and C? Brie�y explain your answer.

(ii) P, Q and R are three more people, one a liar, one a saint, and the third a contrarian
who tells a lie if he is the �rst to speak or if the preceding speaker told the truth, but
otherwise tells the truth. They make the following statements:

P: Q is the liar.
Q: R is the liar.
R: P is the liar.

Who is the liar among P, Q and R? Brie�y explain your answer.

(iii) X, Y and Z are three more people, one a liar, one a switcher and one a contrarian.
They make the following statements:

X: Y is the liar.
Y: Z is the liar.
Z: X is the liar.
X: Y is the liar.
Y: X is the liar.

Who is the liar among X, Y and Z? Brie�y explain your answer.
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7. For APPLICANTS IN COMPUTER SCIENCE ONLY.

Ox-words are sequences of letters and that are constructed according to the following
rules:

I. The sequence consisting of no letters is an Ox-word.

II. If the sequence is an Ox-word, then the sequence that begins with , followed
by and ending in , written , is an Ox-word.

III. If the sequences and are Ox-words, then the sequence followed by , written
, is an Ox-word.

All Ox-words are constructed using these rules. The length of an Ox-word is the number
of letters that occur in it. For example and are Ox-words of length 4.

(i) Show that every Ox-word has an even length.

(ii) List all Ox-words of length 6.

(iii) Let be an Ox-word. Is the number of occurrences of in necessarily equal to
the number of occurrences of in ? Justify your answer.

You may now assume that every Ox-word (of positive length) can be written uniquely
in the form 0 where and 0 are Ox-words.

(iv) For > 0, let be the number of Ox-words of length 2 . Find an expression for
+1 in terms of 0 1 · · · . Explain your reasoning.
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20 End of Last Question
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