EXTRA MATHEMATICS ADMISSIONS TEST December 2021 Time allowed: 1 hour

Surname	
Other names	

This paper contains 10 multiple choice questions. Calculators are not permitted.

For each question on pages 2–11 you will be given **five** possible answers, just one of which is correct. Indicate for each question **A-J** which answer (a), (b), (c), (d), or (e) you think is correct with a tick (\checkmark) in the corresponding column in the table below.

	(a)	(b)	(c)	(d)	(e)
А					
В					
С					
D					
${f E}$					
F					
G					
н					
I					
J					

A. Which of the following expressions has the largest value? Note that all angles are given in degrees.

- (a) $\cos(10^{\circ})$,
- (b) $\sin(115^{\circ})$,
- (c) $\cos(375^{\circ})$,
- (d) $\sin(85^{\circ})$,
- (e) $\cos(-20^{\circ})$.

B. In the expansion of $(x^2 + xy + y^2)^n$, where *n* is a positive whole number, the coefficient of x^3y^{2n-3} is

(a) $\binom{n}{3}$

- (b) $\binom{n}{3} \times \binom{n}{2}$
- (c) $\binom{n}{3} + 2 \times \binom{n}{2}$
- (d) $2 \times \binom{n}{2}$
- (e) $\binom{n}{3} + \binom{n}{2}$

C. Given a real number c with 0 < c < 1, the line y = c intersects the circle $x^2 + y^2 = 1$ at two points. These two points, together with (1,0) and (-1,0), form a quadrilateral. Which of the following graphs is a plot of the area of that quadrilateral against c?

D. A particle moves along the x-axis. At time t = 0 the particle starts at (0,0) with initial speed 1, moving towards x = 1. When the particle reaches x = n for any positive integer n, its speed immediately changes to 2^{-n} but its direction is unchanged. What is the particle's position at time t = 100?

(a)
$$x = \frac{89}{16}$$
,
(b) $x = \frac{105}{16}$,
(c) $x = \frac{3200}{32}$,
(d) $x = \frac{421}{64}$,

(e) The particle has escaped to infinity.

E. The polynomial equation $x^4 - (2k+1)x^2 + 2x + k^2 - 1 = 0$ has exactly four real solutions x if and only if

(a)
$$k > 1$$
,
(b) $k > -\frac{5}{4}$,
(c) $k > \frac{3}{4}$,
(d) $k < -\frac{5}{4}$ or $k > \frac{3}{4}$,
(e) $\frac{3}{4} < k < 1$ or $k > 1$.

F. The point A has coordinates (3, 4). The origin (0, 0) and the point A both lie on the circumference of a circle C. The diameter of C through A also meets C at another point B. The distance between B and the origin is 10. It follows that the coordinates of B could be either

(a)
$$\left(-5\sqrt{2}, 5\sqrt{2}\right)$$
 or $\left(5\sqrt{2}, -5\sqrt{2}\right)$,
(b) $(-4, 3)$ or $(4, -3)$,
(c) $\left(-5, 5\sqrt{3}\right)$ or $\left(5, -5\sqrt{3}\right)$,
(d) $(-8, 6)$ or $(8, -6)$,

(e)
$$(-5\sqrt{3},5)$$
 or $(5\sqrt{3},-5)$.

G. Without calculating it directly, which of the following numbers is the square of 123, 456, 789?

- (a) 15,241,578,710,190,521,
- (b) 15,241,578,730,190,521,
- (c) 15,241,578,750,190,521,
- (d) 15,241,578,770,190,521,
- (e) 15,241,578,790,190,521.

H. A function f(x) satisfies the following equation

$$f(x) + f(y) = \frac{1}{f(xy)}$$

for any real positive numbers x and y, and also satisfies f(x) > 0 for all real positive numbers x. It follows that f(2021) is

- (a) 1,
- (b) 2021,
- (c) $\log_e 2021$,

(d)
$$\frac{1}{\sqrt{2}}$$
,
(e) $\frac{1}{\log_e 2021}$.

[Hint: try substituting x = 1 and y = 1 into the given expression.]

I. Given that there are positive real numbers a, b, c that satisfy

$$\int_{a}^{b} \log_{c} \left(\sin^{4} x \tan^{2} x \right) \, \mathrm{d}x = 1 \quad \text{and} \quad \int_{a}^{b} \log_{c} \left(\sin^{2} x \cos^{2} x \right) \, \mathrm{d}x = 3,$$

it follows that the value of

$$\int_{a}^{b} \log_{c} \left(\sin^{4} x \cos^{2} x \right) \, \mathrm{d}x$$

must be equal to

- (a) 4,
- (b) 5,
- (c) 6,
- (d) 7,
- (e) 8.

[Note that $\sin^4 x$ means $(\sin x)^4$.]

J. There is a straight line that is normal to the curve $y = x^3 - kx$ at two different points if and only if

- (a) $k \ge \sqrt{3}$,
- (b) $k^2 \ge 3$,
- (c) $k^2 \ge 1$,
- (d) $k \ge 1$,
- (e) $k \ge \sqrt{3}$ or $k \le -1$.

End of last question