EXTRA MATHEMATICS ADMISSIONS TEST December 2021
 Time allowed: 1 hour

Surname	
Other names	

This paper contains 10 multiple choice questions.

Calculators are not permitted.

For each question on pages $2-11$ you will be given five possible answers, just one of which is correct. Indicate for each question A-J which answer (a), (b), (c), (d), or (e) you think is correct with a tick $(\sqrt{ })$ in the corresponding column in the table below.

	(a)	(b)	(c)	(d)	(e)
A					
B					
C					
D					
E					
F					
G					
H					
I					
J					

A. Which of the following expressions has the largest value? Note that all angles are given in degrees.
(a) $\cos \left(10^{\circ}\right)$,
(b) $\sin \left(115^{\circ}\right)$,
(c) $\cos \left(375^{\circ}\right)$,
(d) $\sin \left(85^{\circ}\right)$,
(e) $\cos \left(-20^{\circ}\right)$.
B. In the expansion of $\left(x^{2}+x y+y^{2}\right)^{n}$, where n is a positive whole number, the coefficient of $x^{3} y^{2 n-3}$ is
(a) $\binom{n}{3}$
(b) $\binom{n}{3} \times\binom{ n}{2}$
(c) $\binom{n}{3}+2 \times\binom{ n}{2}$
(d) $2 \times\binom{ n}{2}$
(e) $\binom{n}{3}+\binom{n}{2}$
C. Given a real number c with $0<c<1$, the line $y=c$ intersects the circle $x^{2}+y^{2}=1$ at two points. These two points, together with $(1,0)$ and $(-1,0)$, form a quadrilateral. Which of the following graphs is a plot of the area of that quadrilateral against c ?

D. A particle moves along the x-axis. At time $t=0$ the particle starts at $(0,0)$ with initial speed 1 , moving towards $x=1$. When the particle reaches $x=n$ for any positive integer n, its speed immediately changes to 2^{-n} but its direction is unchanged. What is the particle's position at time $t=100$?
(a) $x=\frac{89}{16}$,
(b) $x=\frac{105}{16}$,
(c) $x=\frac{3200}{32}$,
(d) $x=\frac{421}{64}$,
(e) The particle has escaped to infinity.
E. The polynomial equation $x^{4}-(2 k+1) x^{2}+2 x+k^{2}-1=0$ has exactly four real solutions x if and only if
(a) $k>1$,
(b) $k>-\frac{5}{4}$,
(c) $k>\frac{3}{4}$,
(d) $k<-\frac{5}{4}$ or $k>\frac{3}{4}$,
(e) $\frac{3}{4}<k<1$ or $k>1$.
F. The point A has coordinates $(3,4)$. The origin $(0,0)$ and the point A both lie on the circumference of a circle \mathcal{C}. The diameter of \mathcal{C} through A also meets \mathcal{C} at another point B. The distance between B and the origin is 10 . It follows that the coordinates of B could be either
(a) $(-5 \sqrt{2}, 5 \sqrt{2})$ or $(5 \sqrt{2},-5 \sqrt{2})$,
(b) $(-4,3)$ or $(4,-3)$,
(c) $(-5,5 \sqrt{3})$ or $(5,-5 \sqrt{3})$,
(d) $(-8,6)$ or $(8,-6)$,
(e) $(-5 \sqrt{3}, 5)$ or $(5 \sqrt{3},-5)$.
G. Without calculating it directly, which of the following numbers is the square of $123,456,789$?
(a) $15,241,578,710,190,521$,
(b) $15,241,578,730,190,521$,
(c) $15,241,578,750,190,521$,
(d) $15,241,578,770,190,521$,
(e) $15,241,578,790,190,521$.
H. A function $f(x)$ satisfies the following equation

$$
f(x)+f(y)=\frac{1}{f(x y)}
$$

for any real positive numbers x and y, and also satisfies $f(x)>0$ for all real positive numbers x. It follows that $f(2021)$ is
(a) 1 ,
(b) 2021,
(c) $\log _{e} 2021$,
(d) $\frac{1}{\sqrt{2}}$,
(e) $\frac{1}{\log _{e} 2021}$.
[Hint: try substituting $x=1$ and $y=1$ into the given expression.]
I. Given that there are positive real numbers a, b, c that satisfy

$$
\int_{a}^{b} \log _{c}\left(\sin ^{4} x \tan ^{2} x\right) \mathrm{d} x=1 \quad \text { and } \quad \int_{a}^{b} \log _{c}\left(\sin ^{2} x \cos ^{2} x\right) \mathrm{d} x=3
$$

it follows that the value of

$$
\int_{a}^{b} \log _{c}\left(\sin ^{4} x \cos ^{2} x\right) \mathrm{d} x
$$

must be equal to
(a) 4,
(b) 5,
(c) 6 ,
(d) 7 ,
(e) 8 .
[Note that $\sin ^{4} x$ means $(\sin x)^{4}$.]
\mathbf{J}. There is a straight line that is normal to the curve $y=x^{3}-k x$ at two different points if and only if
(a) $k \geq \sqrt{3}$,
(b) $k^{2} \geq 3$,
(c) $k^{2} \geq 1$,
(d) $k \geq 1$,
(e) $k \geq \sqrt{3}$ or $k \leq-1$.

