EXTRA MATHEMATICS ADMISSIONS TEST December 2022
 Time allowed: 1 hour

Surname	
Other names	

This paper contains 10 multiple choice questions.
Calculators are not permitted.
For each question on pages $2-11$ you will be given five possible answers, just one of which is correct. Indicate for each question A-J which answer (a), (b), (c), (d), or (e) you think is correct with a tick $(\sqrt{ })$ in the corresponding column in the table below.

	(a)	(b)	(c)	(d)	(e)
\mathbf{A}					
\mathbf{B}					
\mathbf{C}					
\mathbf{D}					
\mathbf{E}					
\mathbf{F}					
\mathbf{G}					
\mathbf{H}					
\mathbf{I}					
\mathbf{J}					

A. Whenever I toss a particular coin, it lands on heads with probability $\cos ^{2} \alpha$ for some fixed real number α (and the outcome is independent of other tosses). I toss the coin three times. The probability that the coin lands on heads two or more times is equal to
(a) $1+3 \sin ^{4} \alpha-2 \sin ^{6} \alpha$,
(b) $1-3 \sin ^{4} \alpha-2 \sin ^{6} \alpha$,
(c) $1+3 \sin ^{4} \alpha+2 \sin ^{6} \alpha$,
(d) $1-3 \sin ^{4} \alpha+2 \sin ^{6} \alpha$,
(e) $1+8 \sin ^{6} \alpha$.
B. Which of the following graphs is a sketch of $e^{-x / 2}-e^{-x}$ for $x>0$?
(a)
(b)
(c)

(d)

(e)

C. For precisely which non-zero real values of x is it true that

$$
x^{2}-3 x+2<\frac{x-1}{x} ?
$$

(a) $x<1-\sqrt{2}$ or $x>1+\sqrt{2}$,
(b) $1-\sqrt{2}<x<0$ or $1<x<1+\sqrt{2}$,
(c) $1<x<1+\sqrt{2}$,
(d) $1-\sqrt{2}<x<1+\sqrt{2}$,
(e) $1-\sqrt{2}<x<0$.
D. Consider the two inequalities

$$
1 \leq x^{2}+y^{2} \leq 4 \quad \text { and } \quad x^{2} \geq 3 y^{2}
$$

The total area of all regions of the (x, y)-plane where both inequalities hold is
(a) $\pi \sqrt{3}$,
(b) π,
(c) 2π,
(d) $\frac{\pi}{2}$,
(e) $\frac{\pi^{2}}{6}$.
E. The points $(0,1)$ and (p, q) are on opposite ends of the diameter of circle C. The x-axis is a tangent to the circle C if and only if
(a) $p=1+q$,
(b) $p q=1$,
(c) $p^{2}=4 q$,
(d) $p^{2}+(q-1)^{2}=1$,
(e) $p+q=1$.
F. The series

$$
1+\left(1+x-x^{2}\right)+\left(1+x-x^{2}\right)^{2}+\left(1+x-x^{2}\right)^{3}+\ldots
$$

converges to $\frac{1}{x(x-1)}$ for precisely which real values of x ?
(a) If and only if $-1<x<1$,
(b) If and only if we have both $x \neq 0$ and $x \neq 1$,
(c) If and only if either $-1<x<0$ or $1<x<2$,
(d) If and only if either $-2<x<-1$ or $0<x<1$,
(e) For all real x.
G. Given that $y=f(x)$ is a solution to $\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{1 / 4}$, it follows that one of the following functions is a solution to $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 y^{1 / 4}$. Which one?
(a) $y=(2)^{-4} f(x)$,
(b) $y=(2)^{3} f(x)$,
(c) $y=(2)^{4 / 3} f(x)$,
(d) $y=(2)^{-3} f(x)$,
(e) $y=(2)^{4} f(x)$.
H. Suppose that a function $f(n)$ on the positive integers is defined such that $f(1)=1$ and then for $n \geq 1$

$$
f(2 n)=f(n) \quad \text { and } \quad f(2 n+1)=f(n)+f(n+1)
$$

How many values of n are there such that $f(n)=3$ and also n is a multiple of 35 ?
(a) 0 ,
(b) 1 ,
(c) 2 ,
(d) 3 ,
(e) Infinitely many.
I. The number of positive solutions x to the equation

$$
\log _{2} x=\log _{2}(x+a)+b,
$$

where a and b are non-zero real numbers, is
(a) zero if $a b<1$, or one if $a b>1$,
(b) one if $a b<1$, or two if $a b>1$,
(c) one if $a b<0$, or zero if $a b>0$,
(d) zero if $a b<0$, or one if $a b>0$,
(e) one if $a b<1$, or zero if $a b>1$.
J. Given that $\int_{1}^{2} \frac{x^{2}}{1+x^{4}} \mathrm{~d} x=A$ where A is some positive real number (which you should not attempt to determine), it follows that the value of $\int_{1}^{2} \frac{x^{-2}}{1+x^{4}} \mathrm{~d} x$ is equal to
(a) $1-A$,
(b) $-A$,
(c) $\frac{1}{A}$,
(d) $A-1$,
(e) $\frac{1}{2}-A$.

