EXTRA MATHEMATICS ADMISSIONS TEST December 2022 Time allowed: 1 hour

Surname	
Other names	

This paper contains 10 multiple choice questions. Calculators are not permitted.

For each question on pages 2–11 you will be given **five** possible answers, just one of which is correct. Indicate for each question **A-J** which answer (a), (b), (c), (d), or (e) you think is correct with a tick (\checkmark) in the corresponding column in the table below.

	(a)	(b)	(c)	(d)	(e)
А					
В					
С					
D					
${f E}$					
F					
G					
н					
Ι					
J					

A. Whenever I toss a particular coin, it lands on heads with probability $\cos^2 \alpha$ for some fixed real number α (and the outcome is independent of other tosses). I toss the coin three times. The probability that the coin lands on heads two or more times is equal to

- (a) $1 + 3\sin^4 \alpha 2\sin^6 \alpha$,
- (b) $1 3\sin^4 \alpha 2\sin^6 \alpha$,
- (c) $1+3\sin^4\alpha+2\sin^6\alpha$,
- (d) $1 3\sin^4 \alpha + 2\sin^6 \alpha$,
- (e) $1 + 8\sin^6 \alpha$.

B. Which of the following graphs is a sketch of $e^{-x/2} - e^{-x}$ for x > 0?

C. For precisely which non-zero real values of x is it true that

$$x^2 - 3x + 2 < \frac{x - 1}{x} \quad ?$$

(a)
$$x < 1 - \sqrt{2}$$
 or $x > 1 + \sqrt{2}$,
(b) $1 - \sqrt{2} < x < 0$ or $1 < x < 1 + \sqrt{2}$,
(c) $1 < x < 1 + \sqrt{2}$,
(d) $1 - \sqrt{2} < x < 1 + \sqrt{2}$,
(e) $1 - \sqrt{2} < x < 0$.

D. Consider the two inequalities

 $1 \le x^2 + y^2 \le 4$ and $x^2 \ge 3y^2$.

The **total** area of all regions of the (x, y)-plane where **both** inequalities hold is

- (a) $\pi \sqrt{3}$, (b) π ,
- (c) 2π ,

(d)
$$\frac{\pi}{2}$$
,
(e) $\frac{\pi^2}{6}$.

E. The points (0,1) and (p,q) are on opposite ends of the diameter of circle C. The x-axis is a tangent to the circle C if and only if

- (a) p = 1 + q,
- (b) pq = 1,
- (c) $p^2 = 4q$,
- (d) $p^2 + (q-1)^2 = 1$,
- (e) p + q = 1.

F. The series

$$1 + (1 + x - x^{2}) + (1 + x - x^{2})^{2} + (1 + x - x^{2})^{3} + \dots$$

converges to $\frac{1}{x(x-1)}$ for precisely which real values of x?

- (a) If and only if -1 < x < 1,
- (b) If and only if we have both $x \neq 0$ and $x \neq 1$,
- (c) If and only if either -1 < x < 0 or 1 < x < 2,
- (d) If and only if either -2 < x < -1 or 0 < x < 1,
- (e) For all real x.

G. Given that y = f(x) is a solution to $\frac{\mathrm{d}y}{\mathrm{d}x} = y^{1/4}$, it follows that one of the following functions is a solution to $\frac{\mathrm{d}y}{\mathrm{d}x} = 2y^{1/4}$. Which one?

- (a) $y = (2)^{-4} f(x)$,
- (b) $y = (2)^3 f(x)$,
- (c) $y = (2)^{4/3} f(x),$
- (d) $y = (2)^{-3} f(x),$
- (e) $y = (2)^4 f(x)$.

H. Suppose that a function f(n) on the positive integers is defined such that f(1) = 1 and then for $n \ge 1$

$$f(2n) = f(n)$$
 and $f(2n+1) = f(n) + f(n+1)$.

How many values of n are there such that f(n) = 3 and also n is a multiple of 35?

(a) 0,

- (b) 1,
- (c) 2,
- (d) 3,
- (e) Infinitely many.

I. The number of positive solutions x to the equation

$$\log_2 x = \log_2(x+a) + b,$$

where a and b are non-zero real numbers, is

- (a) zero if ab < 1, or one if ab > 1,
- (b) one if ab < 1, or two if ab > 1,
- (c) one if ab < 0, or zero if ab > 0,
- (d) zero if ab < 0, or one if ab > 0,
- (e) one if ab < 1, or zero if ab > 1.

J. Given that $\int_{1}^{2} \frac{x^{2}}{1+x^{4}} dx = A$ where A is some positive real number (which you should not attempt to determine), it follows that the value of $\int_{1}^{2} \frac{x^{-2}}{1+x^{4}} dx$ is equal to

- (a) 1 A,
- (b) -A,
- (c) $\frac{1}{A}$,
- (d) A 1,
- (e) $\frac{1}{2} A$.

End of last question