EXTRA MATHEMATICS ADMISSIONS TEST November 2023 Time allowed: 1 hour

Full Name	
UCAS ID	
MAT ID	

This paper contains 10 multiple choice questions. Calculators are not permitted.

For each question on pages 2–11 you will be given **five** possible answers, just one of which is correct. Indicate for each question **A-J** which answer (a), (b), (c), (d), or (e) you think is correct with a tick (\checkmark) in the corresponding column in the table below.

	(a)	(b)	(c)	(d)	(e)
А					
В					
С					
D					
E					
F					
G					
н					
Ι					
J					

A. The function $p(x) = x^3$ is an example of a polynomial with the property that there is a point on the graph y = p(x) with zero derivative which is neither a local maximum nor a local minimum. Which one of the following polynomials has the same property?

- (a) $y = x^3 3x^2 + x$
- (b) $y = x^3 3x^2 + 2x$
- (c) $y = x^3 3x^2 + 3x$
- (d) $y = x^3 3x^2 + 4x$
- (e) $y = x^3 3x^2 + 5x$

B. Which of the following numbers is the smallest?

(a)
$$\log_{10} \left(\sqrt[10]{10^{11}} \right)$$

(b) $\frac{\pi}{2}$
(c) $\frac{11}{9}$
(d) $\sqrt{\frac{3}{2}}$

(e) $\sqrt{3}\cos(44^\circ)$

C. The sum
$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$
. It follows that
 $1^3 + 3^3 + 5^3 + 7^3 + \dots + 19^3$

is equal to

- (a) 19,800
- (b) 19,900
- (c) 20,000
- (d) 20,100
- (e) 20,200

D. All even square numbers are multiples of 4. All odd square numbers are one more than a multiple of 4. It follows that the number of positive integer solutions (x, y) to the equation

$$x^2 + 3y^2 = 4442$$

is

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4442

E. Let d(n) be the number of digits in a positive integer n (with n written in the usual decimal notation). For example d(2) = 1, d(103) = 3, and $d(10^6) = 7$. Define the sequence $s_n = (20)^{-d(n)}$. What is the sum $\sum_{n=1}^{\infty} s_n$ equal to?

- (a) $\frac{1}{2}$ (b) $\frac{4}{5}$ (c) $\frac{9}{10}$
- (d) 1
- (e) $\frac{9}{5}$

F. For two vectors $\begin{pmatrix} a \\ b \end{pmatrix}$ and $\begin{pmatrix} c \\ d \end{pmatrix}$ with integer components (positive or negative or zero), we define the function

$$f\left(\binom{a}{b}, \binom{c}{d}\right) = \binom{ac+bd}{ad+bc+2bd}.$$

How many vectors $\begin{pmatrix} a \\ b \end{pmatrix}$ with integer components are there such that

$$f\left(\binom{a}{b},\binom{a}{b}\right) = \binom{2}{0} \quad ?$$

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) Infinitely many

G. For a pair of integers x and y with $x \ge 0$ and y > 0, we define

$$f(x,y) = \frac{1}{2}(x+y)(x+y+1) + y$$

What is the set of possible values that f(x, y) can take?

- (a) All positive integers.
- (b) All positive even integers.
- (c) All positive integers except for odd prime numbers.
- (d) All positive integers that are triangular numbers (those which are the sum of the first k positive integers for some $k \ge 1$).
- (e) All positive integers except for the triangular numbers.

H. Let $p(x) = 2x^4 - 3x^3 - 5x^2 + 2x + 2$. Given that the y = mx, with m a real number, crosses the curve y = p(x) at four distinct points, let the x-coordinates of those points be x_1, x_2, x_3 , and x_4 . The product $x_1x_2x_3x_4$ is equal to

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) Not enough information

I. Consider the nine lines y = 2x + 1, y = 2x + 2, ..., y = 2x + 9 and the seven lines y = -x + 1, y = -x + 2, ..., y = -x + 7.

How many distinct points are there at which the line y = 1 - 10x crosses one or more of the other lines?

- (a) 12
- (b) 13
- (c) 14
- (d) 15
- (e) 16

J. Which of the following is the graph of $y(y^3 + 4y^2x + 4x^3) = x^2(1 - x^2 - 6y^2)$?

End of last question