
SOLUTIONS FOR ADMISSIONS TEST IN
MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS

WEDNESDAY 2 NOVEMBER 2016

Mark Scheme:

Each part of Question 1 is worth 4 marks which are awarded solely for the correct answer.

Each of Questions 2-7 is worth 15 marks

QUESTION 1:

A. Considering the sequence, a2 = l, a3 = l2, a4 = l3, each additional term multiplies the previous
term by l. The product of the first 15 terms is equal to l1+2+...+14 = l

14∗15
2 = l105. The answer is

(d).

B. Call the length of one of the sides of the hexagon p, then the side of the square is equal to
p + (1 − p) = 1. Then as the hexagon side forms a triangle in each corner of the square, using
Pythagoras, p2 = (1− p)2 + (1− p)2. Solving this quadratic results in p = 2±

√
2, but as the length

must be less than 1 the answer is (b).

C. We can rewrite the given equation as (x+ a
2
)2+(y+ b

2
)2 = c+ a2

4
+ b2

4
. For the circle to contain the

origin, the distance from the centre to the origin must be less than the radius, so a2

4
+ b2

4
< c+ a2

4
+ b2

4
.

The answer is (a).

D. cosn(x) + cos2n(x) = cosn(x)(1 + cosn(x)) = 0. For this to be true, if n is even, cos(x) = 0 has
two roots, but when n is odd either cos(x) = 0 or cos(x) = −1, which is three roots. Hence the
answer is (d).

E. When x = 0, y = 1 − 1 = 0, so we can rule out (d) and (e). To work out the number of x-axis
intersection points, consider (x − 1)2 = cos(πx). The shape of these graphs means they cannot
intersect 6 times (eliminating (b)). The answer cannot be (c), because we know there is a crossing
point x = 2, but that y is positive when x = 1. So the answer is (a).

F. Using the factor theorem, for (x2+1) to be a factor, (x2+1) = 0, so x2 = −1. Then the equation
given becomes (4)n − (2)n(−2)n = 0. This only holds when (−2)n is positive, so the answer is (b).

G. Considering the first few terms x0 = 1, x1 = x0 = 1, x2 = 2, x3 = 4, x4 = 8, and so on. By
observation, xn = 2n−1 for n ⩾ 1. As this is a geometric progression, we can evaluate the sum of the
sequence as

∞∑
k=0

1

xk

=
1

1
+

∞∑
k=1

1

2k−1

= 1 +
1

1− 1
2

= 3

The answer is (d).
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H. The area bounded by the x-axis and the curve y = f(x), A1 is equal to

A1 =

∫ √
a

−
√
a

f(x) dx =
4

3
a

3
2 ,

whilst the area bounded by the x-axis and the curve y = g(x), A2 is equal to

A2 = |
∫ 4√a

− 4√a

g(x) dx| = 8

5
a

5
4 .

We require an a such that A1 > A2, so

4

3
a

3
2 >

8

5
a

5
4

20a
6
4 > 24a

5
4

a
1
4 >

6

5

and so the answer is (e).

I. Let ax+by = c, which rearranges to y = −a
b
x+ c

b
. Given that b is positive we can interpret this as

achieving the maximum c when the line y = −a
b
x+ c

b
is moved up the y-axis whilst still intersecting

the disc formed by x2 + y2 ⩽ 1. Hence the line should be tangent to the unit circle.

By Pythagoras, (c
b

)2

= 1 +
(a
b

)2

and so the answer is (c).

J. We are trying to construct counter-examples for each of the statements. Note that 0 ⩽ x(n) ⩽ 9.
(a) is true since, for example, Π(4) = 1, but 4 is not prime. (b) is false - we don’t need to consider
even n beyond xn = 4; for this case we know no primes end in a 4, but for example Π(64) = 1
as 64 = 26. For odd n, x(n) = 1,Π(n) = 1, counterexample n = 121 = 112; x(n) = 3,Π(n) = 1,
counterexample n = 243 = 35; x(n) = 5,Π(n) = 1, counterexample n = 25 = 52; x(n) = 7,Π(n) = 1,
counterexample n = 16807 = 75; x(n) = 9,Π(n) = 1, counterexample n = 9 = 32. (c), (d), and (e)
are all true. The answer is (b).
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2. (i) [1 mark] We have

A(B(x)) = 2(3x+ 2) + 1 = 6x+ 5;

B(A(x)) = 3(2x+ 1) + 2 = 6x+ 5.

(ii) [3 marks] We note

A2(x) = 2(2x+ 1) + 1 = 4x+ 2 + 1,

A3(x) = 2(4x+ 2 + 1) + 1 = 8x+ 4 + 2 + 1,

and so more generally

An(x) = 2nx+ 2n−1 + 2n−2 + · · ·+ 2 + 1 = 2nx+ (2n − 1)

using the geometric series formula (pattern spotting sufficient).

(iii) [4 marks] As 108 = 2233 then F can be achieved using two applications of A and three applications
of B. As AB = BA then only one such F can be achieved but the number of different orders in
which A,A,B,B,B might be performed is 5C2 = 10.

(iv) [3 marks] Note that in each case the constant coefficient is one less than the coefficient of x. We
can prove this by noting

A(ax+ (a− 1)) = 2(ax+ (a− 1)) + 1 = 2ax+ 2a− 1;

B(ax+ (a− 1)) = 3(ax+ (a− 1)) + 2 = 3ax+ 3a− 1.

So c = 107. [Alternatively to find c a student might just determine A2B3.]

[Alternative: Commuting argument:
By part (i) A and B commute. Therefore we only need to check 1 of the possible configurations.
From this calculation we find that c = 107.]

(v) [4 marks] As each AmiBni(x) will have a constant coefficient one less than its x coefficient it
follows that k = 214− 92 = 122. However the x coefficient of AmiBni(x) can never be less than 2 so
the sum of 122 such functions cannot have an x coefficient less than 244.

[Alternative: Divisible by 6 argument:
Each term contains at least an A and at least a B, and so each x coefficient is a multiple of 6.
However 214 is not divisible by 6 and hence there exist no positive integers.]
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3. 3. Solution:
(i) [1 mark] Note that

f(2α− x) = (2α− x− α)2 = (α− x)2 = (x− α)2 = f(x)

for all x and hence f is bilateral.

(ii) [2 marks] Consider, for example, x = α + 1 where

f(α + 1) = 1 ̸= −1 = f(α− 1) = f(2α− (α + 1)).

It follows that f is not bilateral.

(iii) [2 marks] Note that∫ b

a

xn dx =

[
xn+1

n+ 1

]b
a

=
bn+1 − an+1

n+ 1

= −
(
an+1 − bn+1

n+ 1

)
= −

[
xn+1

n+ 1

]a
b

= −
∫ a

b

xn dx

as required.

[Alternatively: Some students may show this graphically and argue that area is preserved under
reflection]

(iv) [3 marks] Since f is a polynomial there is a non-negative integer d and reals c0, . . . , cd such that
f(x) = c0 + c1x+ · · ·+ cdx

d for all x. Integration is linear so by the previous part we have∫ b

a

f(x) dx =
d∑

i=0

ci

∫ b

a

xi dx

= −
d∑

i=0

ci

∫ a

b

xi dx = −
∫ a

b

f(x) dx

as required.

(v) [2 marks] The first integral is just the signed area under the graph of y = f(x) between α and
t and the second integral is the signed area under the graph of y = f(x) between 2α − t and α.
The second signed area is a reflection of the first, and area is preserved under reflection. Hence the
integrals are equal.

(vi) [3 marks] For t ≥ α we have by the previous two parts that

G(t) =

∫ t

α

f(x) dx =

∫ α

2α−t

f(x) dx = −
∫ 2α−t

α

f(x) dx = −G(2α− t).

If t ≤ α then put u = 2α− t ≥ α and note that by what we have just shown

G(2α− t) = G(u) = −G(2α− u) = −G(t).

The result follows.

(vii) [2 marks] Since f is a bilateral polynomial we see G(2α − t) = −G(t) for all t. On the other
hand since G is bilateral we have G(2α− t) = G(t) for all t, so G(t) = 0 for all t as required.
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4. (i) [3 marks] Let d1 be the distance from (0, 0) to the point where C1 touches the x-axis. Note
that the x-axis is tangent to C1 and hence perpendicular to the radius at this point. So C1 has centre
(d1, 1). We have a right-angled triangle, with 1

d1
= tan(α), so d1 =

1
tan(α)

.

So the centre of C1 is ( 1
tan(α)

, 1).

(ii) [1 mark] C1 has centre ( 1
tan(α)

, 1) and radius 1, so has equation

(x− 1

tan(α)
)2 + (y − 1)2 = 1.

(iii) [3 marks] Let d2 be the distance between the points where C1 and C2 touch the x-axis. Then
Pythagoras on the right-angled triangle gives (1 + 3)2 = 22 + d22, so d22 = 12.
Also we have similar triangles (both have a right angle and share angle α) so

3

1
=

d2 + d1
d1

so d2 = 2d1.
So 12d22 = (2d1)

2 = 4d21, so d1 =
√
3 (must have d1 > 0). So tan(α) = 1

d1
= 1√

3
so α = 30◦ (or π

6
).

(iv) [3 marks] Take α = 30◦. Let C3 have radius r. Let d3 be the distance between the points where
C2 and C3 touch the x-axis. Then by similar triangles we have

r

d1 + d2 + d3
=

1

d1
=

1√
3
.

So r = d1+d2+d3√
3

= 3 + d3√
3
. So d3 =

√
3(r − 3).

Also since C2 and C3 touch Pythagoras gives

(r + 3)2 = (r − 3)2 + d23 = (r − 3)2 + 3(r − 3)2 = 4(r − 3)2,

so r2 + 6r + 9 = 4r2 − 24r + 36, which factorises to (r − 1)(r − 9) = 0.
We’re looking for C3 larger than C2 so r = 9.

(v) [5 marks] Centres of triangle C1 and C2 are (
1

tan(α)
, 1) and ( 3

tan(α)
, 3) respectively. Area of trapez-

ium is half (bottom plus top) times height, so:

3 + 1

2

2

tan(α)
=

4

tan(α)
.

Or break down as rectangle (area = 2
tan(α)

) plus triangle (area = 2
tan(α)

).

Now deduct C1 sector and C2 sector from trapezium area. Area of C1 sector is 1
2
12(π

2
+ α) = π

4
+ α

2
.

Area of C2 sector is 1
2
32(π

2
− α) = 9π

4
− 9α

2
.

So interstitial area is:

4

tan(α)
−

(π
4
+

α

2

)
−

(
9π

4
− 9α

2

)
=

4

tan(α)
− 5π

2
+ 4α = 4

√
3− 11π

6
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5. (i) [3 marks] We have

s1 = 2(A+B) + C = 2

s2 = 4(2A+B) + C = 10

s3 = 8(3A+B) + C = 34

(ii) [3 marks] Subtracting the first equation from the other two gives

6A+ 2B = 8

22A+ 6B = 32,

whence 4A = 8, so A = 2, B = −2, C = 2 and f(n) = (n− 1)2n+1 + 2.

(iii) [2 marks] We have

sk+1 = f(k) + (k + 1)2k+1

= (k − 1)2k+1 + 2 + (k + 1)2k+1

= k2k+2 + 2 = f(k + 1)

as required.

(iv) [4 marks] We have

tn = (n+ 2n+ 4n+ · · ·+ 2n.n)− (2 + 8 + 24 + ...+ 2n.n)

= n(2n+1 − 1)− f(n)

= n(2n+1 − 1)− (n− 1)2n+1 − 2

= 2n+1 − n− 2.

Now un = tn/2
n, so

un = 2− n+ 2

2n
.

(v) [3 marks]

n∑
k=1

sk =
n∑

k=1

(2k2k − 2k+1 + 2)

=
n∑

k=1

(k2k+1)−
n∑

k=1

(2k+1) + 2n

= 2
n∑

k=1

(k2k)− 2n+2 + 4 + 2n

= 2f(n)− 2n+2 + 4 + 2n

= 2n+2n− 2n+3 + 2n+ 8
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6. (i) [3 marks] There are no possible arrangements - if A is a 1, then either B and D are both 1s
or both 0s. However, if B and D are both 1s then C must also be a 1 - but that would require all
the dancers to be 1s which is forbidden. If B and D are both 0s then C must also be a 0 otherwise
D would not be off-beat. But if C is a 0 they cannot be off-beat.

(ii) [3 marks] Assume that A is a 1 and holds hands with F and B, then either F and B are
both 1s or both 0s. If both F and B are 1s then this pattern must propagate around the circle,
forcing everyone to be 1s, which is forbidden. If F and B are both 0s then C and E must also be 0s,
to keep F and B off-beat. However to ensure C, D, and E are off-beat D must be a 1. Hence the
only possible arrangements are those where precisely two dancers on opposite positions on the ring
are 1, and there are 3 such arrangements.

(iii) [3 marks] Each person holding hands either requires one of the three dancers to be a 1 or
all three to be a 1. If all three, then this propagates round resulting in all 1s, which is forbidden.
Thus for each triplet of dancers one person is a 1. Then either spot the 1,0,0 pattern which only
repeats when n is a multiple of three, or look at the sum of each local triplet of dancers which must
be equal to n and also equal to 3k where k is the number of dancers who are 1s.

(iv) [2 marks] If n is even two separate rings form, however each ring can only be off-beat if the
number of dancers are a multiple of 3, by previous argument. If n is odd, then n must be a multiple
of 3 still because a ring is still formed (with displaced dancers).

(v) [1 mark] Either one dancer is a 1 or three dancers are 1s and one is a 0. There are 8 differ-
ent ways in total.

(vi) [3 marks] There must be at least one dancer who is a 1. Holding hands with this dancer
there must be either no dancers or precisely two dancers who are 1s. If none of the dancers are 1s,
then the alternating 0, 1 pattern is very obvious. If two dancers are 1s, then this leads to a situa-
tion where all dancers are 1s, which is still forbidden. Hence there are 2 possible ways of arranging
off-beat dances.
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7. (Example taken from Graham, Knuth, Patashnik, Concrete Mathematics.)

(i) [2 marks] Three 2-spans:

(ii) [4 marks] Eight 3-spans:

(iii) [3 marks] In a 4-span, the top group may have t = 1, 2, 3 or 4 elements, and may be connected
to the hub by any of t line segments in each case. If t = 4, that is the end of the story, but if t < 4
then the remaining tips may form any (4− t)-span. Thus (using the notation of the next part),

z4 = 1.z3 + 2.z2 + 3.z1 + 4 = 1× 8 + 2× 3 + 3× 1 + 4 = 21.

(iv) [4 marks] More generally, we have

zn = 1.zn−1 + 2.zn−2 + · · ·+ (n− 1).z1 + n.

It follows that
z5 = 1× 21 + 2× 8 + 3× 3 + 4× 1 + 5 = 55.

(v) [2 marks]
z6 = 1× 55 + 2× 21 + 3× 8 + 4× 3 + 5× 1 + 6 = 144.
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