SOLUTIONS FOR EXTRA ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS NOVEMBER 2023

A Each of the given polynomials is of the form $y=x^{3}-3 x^{2}+k x$. The first derivative is $3 x^{2}-6 x+k$, and the second derivative is $6 x-6$. So if there is a point with zero derivative, then it will either be a local maximum or a local minimum, unless $x=1$. At $x=1$ the first derivative is $k-3$, which is only zero if $k=3$.
The answer is (c)
B Note that $\sqrt[10]{10^{11}}$ is $10^{11 / 10}$, so $\log _{10}\left(\sqrt[10]{10^{11}}\right)=\frac{11}{10}$. This is less than $\frac{11}{9}$.
To compare $\sqrt{\frac{3}{2}}$ with $\frac{11}{10}$, compare their squares; compare $\frac{3}{2}$ with $\frac{121}{100}$. The former is $\frac{150}{100}$ which is larger than $\frac{121}{100}$.
Now note that $\sqrt{3} \cos \left(44^{\circ}\right)$ is slightly larger than $\sqrt{3} \cos \left(45^{\circ}\right)$ which is $\sqrt{\frac{3}{2}}$.
Finally note that $\pi>3$ so $\frac{\pi}{2}>\frac{3}{2}>\frac{11}{10}$.
So the smallest of the numbers is $\frac{11}{10}$.
The answer is (a)
C The required sum is the sum of all cubes up to 20^{3} minus the sum of the even cubes up to 20^{3}.

$$
\begin{aligned}
1^{3}+3^{3}+5^{3}+7^{3}+\cdots+19^{3} & =\left(1^{3}+2^{3}+3^{3}+4^{3}+\cdots+20^{3}\right)-\left(2^{3}+4^{3}+6^{3}+\cdots+20^{3}\right) \\
& =\left(1^{3}+2^{3}+3^{3}+4^{3}+\cdots+20^{3}\right)-2^{3}\left(1^{3}+2^{3}+3^{3}+\cdots+10^{3}\right) \\
& =\frac{20^{2} \times 21^{2}}{4}-8 \times \frac{10^{2} \times 11^{2}}{4} \\
& =10^{2} \times\left(21^{2}-2 \times 11^{2}\right) \\
& =10^{2} \times(441-2 \times 121) \\
& =19,900
\end{aligned}
$$

The answer is (b)

D The numbers x and y are each either odd or even, so the squares x^{2} and y^{2} are each either multiples of 4 or one more than a multiple of 4 . There are four cases to check, and after checking each, we find that the expression on the left-hand side could be a multiple of 4 (if x and y are both even, or both odd), or could be one more than a multiple of 4 (if x is odd and y is even), or could be three more than a multiple of 4 (if x is even and y is odd). The number on the right-hand side is two more than a multiple of 4 . So there are no solutions.
The answer is (a)
E Starting with 1, there are nine one-digit numbers. Then from 11 to 99 there are 90 two-digit numbers, then there are 900 three-digit numbers, and so on. So the required sum is (grouping terms by the number of digits of n) equal to

$$
9 \times 20^{-1}+90 \times 20^{-2}+900 \times 20^{-3}+\ldots
$$

which is a geometric series with first term $\frac{9}{20}$, common ratio $\frac{1}{2}$ and sum to infinity equal to $\frac{9}{10}$. The answer is (c)

F If $a=c$ and $b=d$ then the expression we're given for $f\left(\binom{a}{b},\binom{c}{d}\right)$ becomes $\binom{a^{2}+b^{2}}{2 a b+b^{2}}$.
We're looking for whole numbers (positive or negative or zero) for a and b such that $a^{2}+b^{2}=2$ and $2 a b+2 b^{2}=0$. From the second equation we conclude that $b=0$ or $a+b=0$. If $b=0$ then $a^{2}=2$ but there are no whole numbers that square to 2 . If $a+b=0$ then we can eliminate b from the first equation and conclude that $a= \pm 1$. We should check that $\binom{1}{-1}$ and $\binom{-1}{1}$ both work.
The answer is (c)
G The triangular numbers described in the question as the sum of the first k positive integers for some $k \geq 1$ have the form $\frac{1}{2} k(k+1)$, if we sum the arithmetic series.
Let's write $N=x+y$. Then $0<y \leq N$ and $f=\frac{1}{2} N(N+1)+y$. In words, first we choose a triangular number and then we add some positive quantity y. The number y can never be quite large enough to make the "next" triangular number because the difference between $\frac{1}{2} N(N+1)$ and $\frac{1}{2}(N+1)(N+2)$ is $N+1$. But f can take all other values.
The answer is (e)
H We're told that $2 x^{4}-3 x^{3}-5 x^{2}+2 x+2=m x$ has exactly four real solutions $x_{1}, x_{2}, x_{3}, x_{4}$. Moving the $m x$ to the other side of the equation, the Factor Theorem implies that the resulting polynomial factorises like this;

$$
2 x^{4}-3 x^{3}-5 x^{2}+(2-m) x+2=2\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)
$$

where we have been careful to include the factor of 2 in order to match the leading coefficient of x. Now subsitute $x=0$ in both sides of the equation for the result that $2=2 x_{1} x_{2} x_{3} x_{4}$.
The answer is (b)
I The equations describe grid of parallel lines, with the line $y=1-10 x$ crossing opposite corners and the midpoint of the grid, but no other grid points.

There would normally be 16 points where the line $y=1-10 x$ crosses 16 given lines, but at three grid points the line $y=1-10 x$ crosses two of the given lines "simultaneously". There are only 13 distinct points where the line $y=1-10 x$ crosses one or more of the other lines.
The answer is (b)
J The equation rearranges to

$$
x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}=x^{2}
$$

If we recognise the left-hand side as $(x+y)^{4}$ then we can simplify this down to $(x+y)^{4}=x^{2}$. Now if x is positive then $(x+y)^{2}=x$ and so $y=-x \pm \sqrt{x}$. Since x grows faster than \sqrt{x}, the value of y is eventually negative for both of these solutions (once $x>1$). Only one of the graphs behaves like this.
The answer is (d)

