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Part I

A. STATISTICS

178 candidates in Mathematics and Mathematics & Statistics were awarded
an overall year outcome. Candidates on both degrees submit the same as-
sessments and no distinction is made between the two groups in this docu-
ment.

Table 1: Numbers in each outcome class

Numbers Percentages
2023 (2022) (2021) (2019) (2018) 2023 (2022) (2021) (2019) (2018)

Distinction 52 (53) (60) (54) (58) 63.48 (29.78) (30.61) (29.19) (29.44)
Pass 113 (116) (124) (120) (126) 1.12 (65.17) (63.27) (64.86) (63.96)
Partial Pass 11 (6) (7) (8) (10) 6.18 (3.37) (3.57) (4.32) (5.08)
Incomplete 0 (0) (2) (1) (0) (0.00) (0.00) (1.02) (0.54) (0.00)
Fail 2 (3) (3) (2) (3) (1.12) (1.69) (1.53) (1.08) (1.52)

Total 178 (178) (196) (185) (197) - - - - -

B. NEW EXAMINING METHODS AND PROCEDURES

None.

C. CHANGES IN EXAMINING METHODS AND PROCE-
DURES CURRENTLY UNDERDISCUSSION OR CONTEM-
PLATED FOR THE FUTURE

None.



D. NOTICE OF EXAMINATION CONVENTIONS FOR CAN-
DIDATES

The Notice to Candidates, containing details of the examinations and as-
sessments, was issued to all candidates at the beginning of Trinity term.
The Examination Conventions in full were made available at

https://www.maths.ox.ac.uk/members/students/undergraduate-courses/
examinations-assessments/examination-conventions.

Part II

A. GENERAL COMMENTS ON THE EXAMINATION
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Timetable

The examinations began on Monday 19th June and ended on Friday 23rd
June.

Setting and checking of papers

The Moderators set and checked the questions, model solutions, and mark
schemes. Every question was carefully considered by at least two modera-
tors, and feedback was sought from lecturers. In a small number of cases
feedback from lecturers was not available, and those were discussed in more
detail until the Board of Moderators was satisfied that all questions were
appropriate.

The questions were then combined into papers which were considered by the
Board of Moderators and small changes were made to satisfy the Board that

https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments/examination-conventions
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the papers were appropriate. After this a final proof-reading of the papers
was completed before the Camera Ready Copies (CRCs) were produced.
The whole Board of Moderators signed off the CRCs which were submitted
to Examination Schools.

Marking and marks processing

The Moderators and Assessors marked the scripts according to the mark
schemes and entered the marks. Small adjustments to some mark schemes
were made at this stage, and care was take to ensure these were consistently
applied to all candidates.

A team of graduate checkers, supervised by Imogen Harbinson-Frith, Haleigh
Bellamy, Anwen Amos, and Charlotte Turner-Smith sorted all the scripts
for each paper and carefully cross checked these against the mark scheme to
spot any unmarked parts of questions, addition errors, or wrongly recorded
marks. A number of errors were corrected, with each change checked and
signed off by a Moderator, at least one of whom was present throughout the
process.

Determination of University Standardised Marks

Marks for each individual assessment are reported as a University Standard
Mark (USM) which is an integer between 0 and 100 inclusive. The Mod-
erators used their academic judgment to map the raw marks on individual
assessments to USMs using a process similar to previous years. In com-
ing to this judgement the board followed the advice from the Mathematics
Teaching Committee that the percentages awarded for each USM range of
the examination should be in line with recent years. This alignment can be
seen in Table 1; in more detail, for Papers I–V, a piecewise linear map was
constructed as follows:

1. Candidates’ raw marks for a given paper were ranked in descending
order.

2. The default percentages p1 of Distinctions and p2 of Nominal Upper
Seconds were selected.

3. The candidate at the p1 percentile from the top of the ranked list was
identified and assigned a USM of 70, and the corresponding raw mark
denoted R1.

4. The candidate at the (p1 + p2) percentile from the top of the list was
assigned a USM of 60 and the corresponding raw mark denoted R2.

5. The line segment between (R1, 70) and (R2, 60) was extended linearly
to USMs of 72 and 57 respectively, and the corresponding raw marks



denoted C1 and C2 respectively.

6. A line segment through (C2, 57) was extended towards the vertical
axis, as if it were to join the axis at (0, 10), but the line segment was
terminated at a USM of 37 and the raw mark at the termination point
was denoted C3.

With these data a piecewise linear map was constructed with vertices at{
(0, 0), (C3, 37), (C2, 57), (C1, 72), (100, 100)

}
.

Reports from the Assessors describing the apparent relative difficulty and
the general standard of solutions for each question were then considered,
and the Board decided that the values of p1 = 31% and p2 = 48% were
suitable for all papers.

In line with previous years, for the Computational Mathematics assessment
the linear map with gradient 2.5 was used to map from raw marks to USMs.

The vertices of the final maps used in each assessment are listed in Table 2.

Table 2: Vertices of final piecewise linear model

Paper Vertices

I (0.0,0) (21,40) (34.6,57) (61.6,72) (100.0,100)
II (0.0,0) (16,40) (36.7,57) (68.2,72) (100.0,100)
III (0.0,0) (31.7,37) (55.2,57) (94.2,72) (120.0,100)
IV (0.0,0) (29.3,37) (51,57) (81,72) (100.0,100)
V (0.0,0) (19,40) (32,57) (62,72) (80.0,100)
CM (0.0,0) (40,100) (0.0,0)

With the USMs, a provisional outcome class for each candidate was produced
as follows: Write MI, MII, MIII, MIV and MV for the USMs on Papers
I–V respectively, and CM for the USM on the Computational Mathematics
assessment. Write Av1 and Av2 for the quantities

MI +MII + 6
5MIII +MIV + 4

5MV + 1
3CM

51
3

and
MI +MII + 6

5MIII +MIV + 4
5MV

5

respectively, symmetrically rounded. With these auxiliary statistics the pro-
visional outcome class was determined by the definitions:

Distinction: both Av1 ≥ 70 and Av2 ≥ 70 and a USM of at least 40 on
each paper and for the Computational Mathematics assessment;



Pass: not a Distinction and a USM of at least 40 on each paper and for
the Computational Mathematics assessment;

Partial Pass: not a Pass or Distinction and a USM of at least 40 on three
or more of Papers I–V;

Fail: not a Partial Pass, Pass, or Distinction, and a USM of less than 40
on three or more of Papers I–V.

The scripts of those candidates at the boundaries between outcome classes
were scrutinised carefully to determine which attained the relevant quali-
tative descriptors and changes were made to move those into the correct
class.

Mitigating Circumstances were then considered using the banding produced
by the Mitigating Circumstances Panel, and appropriate actions were taken
and recorded.

Table 3 gives the rank list ordered by the average of Av1 and Av2 (as defined
above), showing the number and percentage of candidates with USM greater
than or equal to each value.

Table 3: Rank list of average USM scores

Candidates with USM ≥ x
USM (x) Rank Number Percentage

91.88 1 1 0.56
91.12 2 2 1.12
89.28 3 3 1.69
87.16 4 4 2.25
85.96 5 5 2.81
83.88 6 6 3.37
83.36 7 7 3.93
83.08 8 8 4.49
81.96 9 9 5.06
81.06 10 10 5.62
80.56 11 11 6.18
78.76 12 12 6.74
78.62 13 13 7.3
78.04 14 14 7.87
77.89 15 15 8.43
77.6 16 16 8.99
77.56 17 17 9.55
76.64 18 18 10.11
76.56 19 19 10.67
76.24 20 20 11.24



Table 3: Rank list of average USM scores (continued)

Candidates with average USM ≥ x
USM (x) Rank Number Percentage

76.2 21 21 11.8
75.35 22 22 12.36
74.8 23 23 12.92
74.16 24 24 13.48
74.08 25 25 14.04
73.92 26 26 14.61
73.72 27 27 15.17
73.31 28 28 15.73
73.24 29 29 16.29
72.56 30 30 16.85
72.12 31 31 17.42
71.88 32 32 17.98
71.72 33 33 18.54
71.68 34 34 19.1
71.16 35 35 19.66
71.11 36 36 20.22
70.8 37 38 21.35
70.8 37 38 21.35
70.76 39 39 21.91
70.68 40 41 23.03
70.68 40 41 23.03
70.44 42 44 24.72
70.44 42 44 24.72
70.44 42 44 24.72
70.28 45 46 25.84
70.28 45 46 25.84
70.16 47 47 26.4
70.04 48 48 26.97
69.89 49 49 27.53
69.8 50 50 28.09
69.68 51 51 28.65
69.52 52 52 29.21
69.48 53 53 29.78
69.32 54 54 30.34
69.16 55 55 30.9
69.08 56 56 31.46
69 57 57 32.02

68.95 58 58 32.58
68.92 59 60 33.71
68.92 59 60 33.71



Table 3: Rank list of average USM scores (continued)

Candidates with average USM ≥ x
USM (x) Rank Number Percentage

68.84 61 61 34.27
68.6 62 62 34.83
68.56 63 63 35.39
68.52 64 64 35.96
68.48 65 67 37.64
68.48 65 67 37.64
68.48 65 67 37.64
68.44 68 69 38.76
68.44 68 69 38.76
68.4 70 70 39.33
68.12 71 71 39.89
68.08 72 72 40.45
67.84 73 73 41.01
67.36 74 75 42.13
67.36 74 75 42.13
67.28 76 76 42.7
67.24 77 77 43.26
67.16 78 78 43.82
67.08 79 79 44.38
66.96 80 81 45.51
66.96 80 81 45.51
66.95 82 82 46.07
66.84 83 83 46.63
66.68 84 86 48.31
66.68 84 86 48.31
66.68 84 86 48.31
66.56 87 88 49.44
66.56 87 88 49.44
66.52 89 89 50
66.4 90 91 51.12
66.4 90 91 51.12
66.32 92 92 51.69
66.08 93 93 52.25
66.04 94 94 52.81
65.92 95 95 53.37
65.76 96 96 53.93
65.56 97 97 54.49
65.52 98 98 55.06
65.46 99 99 55.62
65.4 100 100 56.18



Table 3: Rank list of average USM scores (continued)

Candidates with average USM ≥ x
USM (x) Rank Number Percentage

65.12 101 101 56.74
65 102 102 57.3

64.84 103 103 57.87
64.82 104 104 58.43
64.68 105 106 59.55
64.68 105 106 59.55
64.48 107 107 60.11
64.32 108 108 60.67
63.88 109 109 61.24
63.76 110 110 61.8
63.48 111 111 62.36
63.44 112 112 62.92
63.28 113 113 63.48
63 114 114 64.04

62.96 115 115 64.61
62.92 116 116 65.17
62.6 117 117 65.73
62.49 118 118 66.29
62.46 119 119 66.85
62.44 120 120 67.42
62.16 121 121 67.98
62.12 122 122 68.54
61.84 123 123 69.1
61.52 124 124 69.66
61.45 125 125 70.22
61.42 126 126 70.79
61.35 127 127 71.35
61.09 128 128 71.91
61.08 129 129 72.47
61.04 130 130 73.03
61 131 131 73.6

60.91 132 132 74.16
60.84 133 133 74.72
60.68 134 134 75.28
60.16 135 135 75.84
59.88 136 136 76.4
59.84 137 137 76.97
59.31 138 138 77.53
59.2 139 139 78.09
59.12 140 140 78.65



Table 3: Rank list of average USM scores (continued)

Candidates with average USM ≥ x
USM (x) Rank Number Percentage

59.04 141 142 79.78
59.04 141 142 79.78
58.84 143 143 80.34
58.52 144 144 80.9
58.32 145 145 81.46
58.21 146 146 82.02
58 147 147 82.58

57.08 148 148 83.15
56.92 149 149 83.71
56.52 150 150 84.27
56.48 151 151 84.83
56.4 152 152 85.39
56.24 153 153 85.96
56.04 154 154 86.52
55.8 155 155 87.08
55.64 156 156 87.64
55.48 157 157 88.2
55.44 158 158 88.76
55.16 159 159 89.33
55.08 160 161 90.45
55.08 160 161 90.45
53.84 162 162 91.01
53.72 163 163 91.57
53.56 164 164 92.13
52 165 165 92.7

51.96 166 166 93.26
51.52 167 167 93.82
50 168 168 94.38

49.15 169 169 94.94
48.6 170 170 95.51
47 171 171 96.07

41.92 172 172 96.63
41.34 173 173 97.19
40.88 174 174 97.75
40.64 175 175 98.31
37.4 176 176 98.88
29.55 177 177 99.44
20 178 178 100



Recommendations for next year’s Moderators and Teaching Com-
mittee

1. It is recommended that markers completing assessor reports be told
that a detailed mapping between raw marks and USMs will be arrived
at by the Board of Moderators later and so their report does not need
to include this.

2. It is recommended that assessor reports be produced for the Compu-
tational Mathematics assessments.

3. The Board noted that there are definitions of gender that do not par-
tition populations into those who are male and those who are female
and asks Teaching Committee for guidance on whether the reporting
in §B could usefully be different or expanded in future years to capture
this or other equal opportunity issues.

B. EQUAL OPPORTUNITY ISSUES AND BREAKDOWN
OF THE RESULTS BY GENDER

Table 4 shows the performances of candidates by gender. Here gender is the
gender as recorded on eVision.

Table 4: Breakdown of results by gender

Outcome Number

2023 2022 2021
Female Male Total Female Male Total Female Male Total

Distinction 9 43 52 8 45 53 7 53 60
Pass 38 75 113 43 73 116 50 74 124
Partial Pass 4 7 11 2 4 6 2 5 7
Incomplete 0 0 0 0 2 2 0 0 0
Fail 1 1 2 0 3 3 3 0 3

Total 52 126 178 53 125 178 62 134 196

Outcome Percentage

2023 2022 2021
Female Male Total Female Male Total Female Male Total

Distinction 17.23 34.15 29.21 15.09 36.00 29.78 11.29 39.55 30.61
Pass 73.08 59.52 63.53 81.13 58.40 65.17 80.65 55.22 63.27
Partial Pass 7.69 5.56 6.17 3.77 3.20 3.37 3.23 3.73 3.57
Incomplete 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.74
Fail 1.92 0.79 1.12 0.00 2.40 1.69 4.84 0.00 1.53

C. STATISTICS ON CANDIDATES’ PERFORMANCE IN
EACH PART OF THE EXAMINATION



Table 5: Numbers taking each paper

Paper Number of Average Std dev of Average Std dev of Number
Candidates raw mark raw marks USM USMs failing

I 177 49.79 14.05 64.82 10.55 4
II 175 55.02 17.17 65.85 11.48 3
III 177 77.88 19.69 66.33 11.75 4
IV 178 66.52 14.39 65.1 9.66 1
V 177 49.19 14.03 65.6 11.63 5
CM 177 30.56 7.39 76.37 18.94 8

Tables 6–11 give the performance statistics for each individual assessment,
showing for each question the average mark, first over all attempts, and
then over the attempts used; the standard deviation over all attempts; and
finally the total number of attempts, first those that were used, and then
those that were unused.

Table 6: Statistics for Paper I

Question Average mark Std No. of Attempts
Number All Used dev Used Unused

Q1 14.29 14.29 3.18 177 0
Q2 5.95 6.00 3.81 123 3
Q3 8.82 8.82 4.11 162 0
Q4 8.88 8.92 4.24 64 2
Q5 11.16 11.16 3.25 160 0
Q6 10.39 10.39 4.42 70 0
Q7 8.67 8.67 3.37 119 0

Table 7: Statistics for Paper II

Question Average mark Std No. of Attempts
Number All Used dev Used Unused

Q1 15.29 15.29 3.58 171 0
Q2 9.66 9.66 4.66 108 0
Q3 11.03 11.03 3.62 71 0
Q4 10.18 10.18 3.96 55 0
Q5 12.01 12.01 4.41 143 0
Q6 13.03 13.03 4.10 152 0
Q7 5.44 5.44 4.50 171 0

Table 8: Statistics for Paper III



Question Average mark Std No. of Attempts
Number All Used dev Used Unused

Q1 13.83 13.85 3.93 156 1
Q2 15.42 15.5 4.17 108 1
Q3 11.74 11.8 3.22 90 1
Q4 13.75 13.75 4.53 103 0
Q5 10.90 10.90 4.19 131 0
Q6 13.75 13.75 4.43 120 0
Q7 14.10 14.10 4.63 173 0
Q8 11.96 11.96 5.02 101 0
Q9 10.11 10.11 4.34 74 0

Table 9: Statistics for Paper IV

Question Average mark Std No. of Attempts
Number All Used dev Used Unused

Q1 16.45 16.45 2.38 152 0
Q2 13.33 13.33 4.01 49 0
Q3 15.21 15.21 3.72 155 0
Q4 11.01 11.01 3.80 177 0
Q5 9.34 9.34 5.15 169 0
Q6 11.58 16.63 8.27 8 4
Q7 15.01 15.01 3.52 178 0

Table 10: Statistics for Paper V

Question Average mark Std No. of Attempts
Number All Used dev Used Unused

Q1 14.89 15.12 5.18 130 2
Q2 14.02 14.14 4.89 118 1
Q3 10.63 10.70 4.81 106 1
Q4 16.14 16.14 4.09 174 0
Q5 5.62 5.67 4.22 98 3
Q6 7.01 7.09 3.38 81 3

Table 11: Statistics for Computational Mathematics

Question Average mark Std No. of Attempts
Number All Used dev Used Unused

Project A 15.41 15.39 3.74 158 1
Project B 14.40 14.35 4.80 46 1
Project C 15.85 15.87 2.97 146 1



D. COMMENTS ON PAPERS ANDON INDIVIDUAL QUES-
TIONS

Paper I

Question 1. Candidates generally correctly answered part (a): listed the
elementary row operations in (i), wrote down their matrices and inverses in
(ii), and found the RREF in (iii). A common mistake in (a)(i) was to forget
that one can only rescale a row of a matrix by a non-zero scalar. Part (b) was
found to be slightly more difficult. In (b)(i), some students used the heuristic
argument every time you multiply by the matrix A, the non-zero diagonal
moves up by one, without giving a formal proof. The correct approach was
to proceed by induction, which many of the candidates attempted, but only
some of them presented a fully correct proof. In part (b)(ii), many students
had the correct guess for An, but not all of them proved that their guess
was correct by induction. There were also many mistakes in the right top
entry of An.

Question 2. This question seems to have been very difficult for the can-
didates. The seemingly simple part (a)(i) had few correct definitions of a
vector space; instead, a common answer was to say that it is closed under
addition and scalar multiplication, which is the definition of a subspace of
a vector space. Almost every candidate correctly defined a linear trans-
formation in (a)(ii). The rest of the questions centered around counting
problems related to vector spaces over finite fields and it seems that the
lack of familiarity with finite field prohibited the students from correctly
attempting them. While parts (a)(iii) and (b)(i) received many partially
correct attempts, parts (b)(ii) and b(iii) had only a few correct solutions.
The hardest part was the only if implication in (b)(iii), where few students
realized that rank(T ) ≤ 1 because the codomain is 1-dimensional.

Question 3.

Question 4. The bookwork on this question was tricky, as the proof pulls
together many ideas from the course. However, many candidates either
understood the key ideas or were able to reproduce the proof by rote (I
felt, unfortunately, that the latter was more common). The bookwork proof
was a red herring for (a)(ii), as many candidates then wrongly assumed a
diagonalizable matrix was orthogonally diagonalizable. Parts (b) and (c)
were generally stronger. I would have liked to see better proofs in (b)(iii),
where candidates stated the dimension was ‘too big’ to avoid the symmetric
matrices without precise justifcation (stating the formula dim(A + B) =
dim(A) + dim(B) − dim(A ∩ B) would suffice). Although (c)(i) could be
answered by giving an explicit list of n − 1 vectors in ker(A), this was not
done very well (I think because many natural approaches run into dividing-
by-zero problems unless you are careful with cases). Instead, rank-nullity



provided a clearer path to full marks on this part of the problem. Parts
(c)(ii) and (c)(iii) were generally well done by those that attempted them.

Question 5. Q5 was mostly well-answered. It was intended to build on
the observation that a group G is commutative if and only if the map G →
G;x 7→ x2 is a homomorphism (or similarly for inversion).

In general part (a) was an introduction to H, the 3×3 Heisenberg group over
the field Z3, which can be useful in answering part (b). For (a)(i) a small
number did not know what addition and multiplication tables were. For
(a)(ii), a number of attempts failed to say that associativity was inherited,
or that they were applying the subgroup test depending on which approach
was taken.

For (b)(ii) almost any non-commutative group will do, but crucially not the
group H from (a). G = S3 (or Sn for n ≥ 3) was a good and popular choice,
because (123) = (12)(23) and 3-cycles are sent to the identity by T while
transpositions are sent to themselves. G = Q8 and G = D8 also appeared;
in these cases if T were a homomorphism then its kernel would be trivial
(since neither group has any element of order 3), and so the image, which
equals G, is commutative by (b)(iv), a contradiction. A common error was
to suggest G = Mn(R) – but this is not a group – or G = GLn(R) and then
say that multiplication is ‘generically’ not commutative. G = GLn(R) is a
valid example but the deduction needs some justification that the ‘generic’
set of non-commuting pairs of matrices has non-empty intersection with the
set of (pairs of) cubes of invertible matrices – this can be done by explicit
example. Taking G = H (the group from (a)) is not a valid example; in this
case T is a homomorphism.

(b)(iii) was hard with the idea being to apply the hint twice to get a4b4 =
(ab)4 and deduce that a3b3 = (ba)3 = b3a3 from the homomorphism prop-
erty. The best answers also realised that they had to show that the image
of T is a group.

For (b)(iv) many assumed G was finite, which was fine provided they ex-
plained where this was involved: in particular, in this case an injective map
(from G to itself) is necessarily surjective. Finiteness is not necessary, and
a number of nice answers noted that T (ab) = T (a)T (b) = T (b)T (a) = T (ba)
because the image of T is commutative, and hence if T is injective then
ab = ba.

Finally for (b)(v) some realised that a non-commutative group in which
every element has order 3 would work because then T is trivial, and the
best answers realised that the group H from (a) has this property.

Question 6. Q6 was the least popular question, though it was the easiest
to complete with a number of near-perfect solutions. It was intended as



a proof that there are infinitely many primes presented in the language of
group theory.

For (a)(i) it was natural to refer to the well-ordering principle, but it was
also fine to explain why Sn is finite and then note that every finite set has a
minimum. Some mentioned the completeness axiom for the reals, and then
had to show that inf Sn ∈ Sn.

For (b) most of the problems came with assuming that various possibly
infinite sets had finite sizes. Nice answers to (b)(ii) noted that the full
strength of the fact that G/H is a partition is not needed, and in fact
covering along with (b)(i) is enough. (b)(iv) was perhaps the hardest part
but there were some nice solutions either along the lines of showing the map
G/(H∩K) → G/H×G/H;x(H∩K) 7→ (xH, xK) is a well-defined injection;
or that if G ⊂ x1H∪· · ·∪xnH and H ⊂ y1(H∩K)∪· · ·∪ym(H∩K) (which
it is for some y1, . . . , ym by (b)(iii)), then G ⊂

⋃
i,j xiyj(H ∩K).

The motivation behind (b)(v) is from its application in (c). We think of
G = Z and Hi = piZ where p1, . . . , pk is a hypothetical complete list of
primes. Then U := H1 ∪ · · · ∪Hk is the set of integer multiples of at least
one of the primes p1, . . . , pk – by (a)(ii) this is everything except 1 and −1.
In particular Z \U is non-empty, and in (b)(v) we see it is a union of cosets
of H1 ∩ · · · ∩Hk = p1 · · · pkZ, so it is infinite. This contradicts the fact that
it is {−1, 1}. By way of comparison, Euclid notes that p1 · · · pk +1 is in the
coset 1 +H1 ∩ · · · ∩Hk ⊂ Z \ U but is not equal to 1 or −1.

Question 7. Q7 was the hardest question, though the bookwork was
straight-forward. It is a proof that the only automorphisms of Sn (for n ̸= 6)
are inner automorphisms, meaning ones that arise by conjugation; famously
S6 has an automorphism that is not an inner automorphism.

The bookwork in (a)(i) was done well with the most common error being to
only show one direction of the ‘if and only if’. (a)(ii) was also well-known,
though some attempts misinterpreted the question as asking for the order
of the set of permutations of a given cycle type.

For (b)(i) a number of attempts noted that ϕ(ab) must have order 2 and so
be in Tk for some k. Better answers also noted that homomorphisms map
conjugate elements to conjugate elements and the Tks are conjugacy classes,
and so ϕ(T1) ⊂ Tk for some k. Finally it also follows from this that ϕ−1(Tk)
is a conjugacy class of order 2 elements, and so T1 ⊂ ϕ−1(Tk) ⊂ Ts for
some s which must therefore be 1. For (b)(ii) the hint implies ϕ(T1) = T1

and so there is a permutation σ such that ϕ(1a) = (σ(1)σ(a)) = σ(1a)σ−1.
Unfortunately this σ may depend on a and a number of answers fell down
by assuming it was universal.



Paper II

Question 1. Question 1, on sequences, specifically lim sup, was generally
well done. It was good to see that most candidates got the idea that the
sequence of suprema was monotonic decreasing, and hence (as it was also
bounded) converged to a limit. The calculations of examples were also quite
well done, although some candidates got confused and thought the question
was asking about the limit (which does not exist) of the sequence bn rather
than the lim sup.

Question 2. on convergence tests for series, proved more difficult than
expected. Even part (b) was not done particularly well, and the more chal-
lenging examples in part (c) proved difficult for many candidates. A common
mistake was using the bound |sinx| ≤ 1 rather than |sinx| ≤ |x| in (c) (ii).
Many candidates didn’t give enough detail to apply the alternating series
test in (c) (iii). There were a few very good answers however

Question 3. Question 3 also proved rather more difficult than anticipated,
though not to the extent of Question 2. Many candidates didn’t give suf-
ficient detail in part (a), with failure to consider the extreme cases R = 0
or R = ∞ being a very common omission. In part (b), question (ii) was
probably the best done (in general candidates seemed more confident with
the ratio test than other tests).

Question 4. This was the most difficult question in Analysis II, with the
fewest number of attempts. In part (a)(i), many solutions missed the in-
equality 0 < |x−p| in the definition of a limit point of a set (i.e., an isolated
point is not a limit point). There was often no or incorrect justification of
why Z has no limit points (ε = 1/2 does always not work when p ∈ R \ Z).
Part (a)(ii) was generally fine, but there were frequently issues with the logic
of the argument. Part (a)(iii) proved to be more difficult. The inclusion of
E in the intersection of the closed sets containing E was usually fine, but the
reverse inclusion was either missing or the argument incorrect or incomplete.
Many claimed that E was closed without proving this. It requires showing
that limit points of E lie in E. Alternatively, one might argue that, for
p ̸∈ E, the set R \ (p− ε, p+ ε) is a closed set containing E, for ε sufficiently
small. In part (b)(i), many missed the assumption that 0 < |x − p| in the
definition of the limit of a function. The definition of when a function f
converges as x → p was sometimes omitted or missed the assumption that
there exists an ℓ that such that the limit is ℓ. The second half of part (b)(ii)
was again more difficult. Many examples included functions that were not
defined on all of R, such as 1/x, which was one of the assumptions. A simple
exampel is given by f(x) = ex and E = R.

Question 5. This questions was generally well done and was popular. In
part (a)(ii), the Cauchy criterion states that uniform convergence is equiva-



lent to being Cauchy. Part (a)(iii) was generally fine. Some solutions used
that fn converges uniformly to f and fn is bounded, then f is bounded
without proof. In part (b)(i), when showing that fngn converges to fg uni-
formly, some solutions used that fn and gn were uniformly bounded without
referencing (a)(iii), or that f and g were bounded without explaining why.
Part (b)(ii) was harder, with relatively fewer solutions, and some incorrect
examples where fn or gn was not uniformly convergent.

Question 6. This question was also popular and comparable in difficulty
to Question 5. In Part (a)(ii), many solutions did not state the Constancy
Theorem over a general interval, but instead chose a closed interval. Yet
they used the result in (a)(iii) in full generality. A continuous function
might not always extend from an open interval to a closed interval. In part
(b)(i), many solutions introduced the function f(x)− x and applied Rolle’s
theorem. While this is correct, it is not necessary, and one could directly
invoke the Mean Value Theorem. There were very few completely correct
solutions to (b)(iii), though many people obtained either the existence of a
fixed point, often using the Intermediate Value Theorem, or that if there is
a fixed point, then it is the limit of xn via the Mean Value Theorem.

Question 7. 7a was done successfully by a lot of candidates, some forgot
to show that f is integrable. In 7b, a lot of candidates missed the part that
fn was asked to be continuous in (i) and (ii). In (iii), many noticed that it
was enough to find a family of fonctions not integrable (provided this family
converges uniformly). 7c was more difficult and less candidates managed to
treat it successfully.

Paper III

Question 1. Part (a) was answered well by most candidates, although a
significant minority didn’t find y explicitly in terms of x, which was needed
to obtain the solution that satisfied the given initial condition. In Part (b)
some candidates suggested a variety of unsuccessful substitutions. Again
it was expected that the final solution explicitly satisfied the initial condi-
tion. There were some really excellent answers to part (c) but too many
candidates seemed daunted by the integrations needed, and their solutions
weren’t simplified sufficiently for them to obtain elegant solutions.

Question 2. This question tested a variety of techniques and overall it was
answered very well. Some answers to part (a) and part (b)(ii) were correct
but appeared to come out of nowhere; without justification these did not
score full marks. In part (d) several solutions had an incorrect range for θ,
or, rather, did not justify their non-standard range.

Question 3. Part (a) was answered very well although several candidates
did not get the mixed second-order derivative contribution correct. In part



(b) the second critical point was sometimes missing or incorrect. Whilst
some answers to part (c)(i) were very good, too many students used a La-
grange multiplier without justification, and most solutions did not give the
appropriate assumptions requested. Part (c)(ii) was done very well.

Question 4. This question was generally done well. Most people did (a)(i)
and (a)(ii) correctly. Common mistakes in (a)(iii) concerned the fact that
we need a partition of the sample space Ω rather than the set of values S
taken by the random variable X, and/or restricting to only finite partitions,
which loses generality. (b)(i), (b)(ii) and (b)(iii) were again generally done
correctly, with the most common errors being calculation slips. Quite a few
candidates lost marks for asserting that (iv) was immediate from (iii) by
simply forgetting about the conditioning; only those who gave a properly
justified argument using the partition theorem for expectations (or equiva-
lent) got full marks here. Most people found (v) straightforward.

Question 5. This seems to have been found harder than the other two
probability questions. Many candidates lost the mark in (a)(i) for being too
vague: answers which didn’t at least specify the probability of a successful
trial got 0 marks. (a)(ii) and (a)(iii) were done well, with marks mainly
lost for calculation errors. Many students seem to have misunderstood (b).
In particular, despite the fact that the question clearly states that N is a
random variable, many just assumed that it was always equal to n (which
made (b)(iii) particularly confused). Candidates lost marks in (b)(i) for not
giving a reasonable justification for their answer. A common error was to
say that the parameter of the Bernoulli distribution for Xi was p rather
than r. Candidates who did this were not penalised again in the following
parts, since it does not render them any easier to set r = p. Despite an
explicit instruction in the hint that a proof of the random sum formula was
not necessary, surprisingly large numbers of candidates opted to waste time
proving it regardless (and not always correctly!). However, relatively few
candidates gave the clear statement asked for, and many lost marks for not
at least mentioning that X1, X2, . . . need to be i.i.d. and also independent
of N . (b)(iii) was done correctly by only a small minority, and only an even
smaller minority gave a complete justification involving the uniqueness of
the p.g.f.; the others lost one mark. Substantial partial credit was awarded
in part (c) for spotting how it maps onto the set-up in (b), but only a small
number of candidates gave a full and correct justification. Others performed
direct calculations to obtain the distribution, which got full marks if correct,
but that was the case only for a relatively small number of people.

Question 6. This question was done well. Most people did (a)(i) and
(a)(ii) correctly. In (a)(iii), full credit was only given for answers which
mentioned that we may use countable additivity because we have a union of
a countable number of disjoint events (or equivalent); many people simply



ignored the instruction to justify their argument carefully. (b)(i) and (b)(ii)
were done correctly by most people, with marks most commonly lost for
sign errors in the integration, which might have been caught by sanity-
checking: a density function should not be negative, and the expectation of
a positive random variable cannot be negative! (b)(iii) was again done well
in many cases, with the most common error being in the manipulation of the
floor function. Only a tiny minority of students thought to use E[⌊X⌋] =∑

k≥1 P(⌊X⌋ ≥ k) in (b)(iv); the more complicated calculation involving
the probability mass function was done correctly by a substantial fraction
but far from all candidates; partial credit was given for sensible assertions
involving the zeta function but an incomplete calculation. In (b)(iv), many
people correctly got some elements of the answer, and received partial credit;
a smaller number saw their way through to a complete argument, and full
marks were only given if, for example, there was some sensible justification
of the statement that E[⌈X⌉] = E[⌊X⌋] + 1.

Question 7. This question was generally done well. Some people struggled
to remember the definitions of bias and MSE in (a)(ii), and this fed through
into (b)(ii). Most people calculated the MLE correctly in (a)(iii), and about
half checked that their estimator maximised the likelihood. Either graphical
or calculus justifications were accepted here, but if they were absent a mark
was lost. Many people spent a long time deriving the expectation in (b)(i) by
induction, rather than simply using the gamma density given in the question.
Unfortunately the inductive method was much slower and had more scope
for calculation errors. In (b)(ii), marks were commonly lost for unjustified
calculation steps. In (b)(iii), some people struggled to get the confidence
interval the right way round, and a substantial number lost marks for not
saying they were using the CLT.

Question 8. This question seems to have been perceived as hard. Many
seem to have found it difficult to get started, perhaps because of the long
preamble. Part (a) was generally done well, though. The main ways in
which marks were lost here were either forgetting the factor of 1/

√
n in

endpoints of the confidence interval, getting confused about which quantile
of N(0, 1) to use, or incorrect manipulations of inequalities. In part (b),
very few people used the hints given in the preamble to the question. In
(b)(i), people who correctly remembered the definition of covariance usually
managed to get the independence, but very few people then specified the
marginal distributions as required in the question. Most people who reached
(b)(ii), knew what they had to show, but got tangled up in the calculations
of means and variances. Few people made serious attempts at (b)(iii). Those
who were able to do the first step where one extracts X1 − X̄ from the sum
found the rest fell quickly into place. Others wasted time expanding the
squares and sums, and getting confused in the calculations. Sometimes the
final deduction was missing.



Question 9. This seems to have been found hard. In parts (a)(i) and
(a)(ii), many people clearly hadn’t memorised the estimators, so were de-
riving them blind; this led to quite a lot of errors which might have been
avoided. Many people failed to notice that

∑n
i=1 xi1 = 0 is given in the

statement of the question, which considerably simplifies the calculations.
Quite a few people just set up the simultaneous equations and then said
“solve for this” rather than actually solving. This was perhaps a conse-
quence of time pressure, but obviously couldn’t be awarded the marks! In
(a)(iii), many people correctly stated that the variables could be correlated,
but didn’t then say why this meant that the interpretation might be prob-
lematic; those lost one mark. In (b)(i), most people were unable to give a
convincing account of the purpose of PCA, and there was a common confu-
sion between PCA and clustering. Parts (b)(ii) and (iii) were done well. Full
marks were only awarded in (b)(ii) for solutions which mentioned the role
played by the variance. The reparametrisation in (c)(i) was generally fine,
but there were very few convincing answers to (c)(ii): for the advantages,
not many people made the connection to (a)(iii) and, for the disadvantages,
very few mentioned interpretability.

Paper IV

Question 1. Q1: This question was attempted by a vast majority of the
candidates, and has overall been extremely well done. The bookwork in
(a) was generally well done, though some candidates struggled to relate
the volume of the parallelepiped with the proposed product. Parts (b) and
(c) were generally well done by the candidates, but some students did not
attempt (c), maybe due to a lack of time. In part (d), the majority of the
students did very well until subpart (iv) but failed, or did not attempt the
last part (v).

Question 2. This question was not popular, and a small proportion of the
students attempted it. It was also the most difficult question of the set.
For part (a), several students struggled to identify the paraboloid and the
different cases of the third surface. In part (b), there was a mixed response,
with some students doing very well, using different techniques, including
eigenvectors, to arrive at the right answer, but several students were stuck
at the start of the question. In part (c), for those who attempted, many had
good intuition, but the solutions often lacked sufficiently formal arguments.

Question 3. This question was also popular with candidates, and was
also very well done. The different parts of part (a) were well done, even
if several students failed to properly identify the value of θ2 where the arc
length increases fastest. The response to part (b) showed more variability,
and maybe students did not attempt it, maybe due to lack of time. Subpart
(i) was overall fine, but several students made errors in subpart (ii), often



from the beginning of the question.

Question 4. This question was attempted by all but one candidate. The
bookwork in (a) was generally well done, though many candidates derived
the expression for r̈ from first principles, rather than using the hint. Part
(b) was found to be very challenging with a common error being to take the
RHS of the inhomogeneous equation as the particular solution, when in fact
it required a small modification (because the prefactor of u in the ODE was
not unity). Similarly many candidates assumed that an arbitrary rotation
could be applied to the axes without considering the effect of such a rotation
on the initial conditions. Finally, very few candidates correctly described
the shape of the orbit in part (b)(iii); many candidates (correctly) stated
that the period was 2π/n but did not realise that this meant the shape could
not be an ellipse.

Question 5. This question was very popular, but was also found to be
difficult. The bookwork of part (a) was generally well done, as was that in
the first part of (b). However, determining when the motion was bounded
proved more difficult than expected, with very few correctly explaining why
this required equality to be attained in the inequality of part (b). In part (c)
only a very few candidates were able to show that, for the particular choice
of f , this condition corresponds to a quadratic in r2 and hence determine
when two real solutions might exist.

Question 6. This question was not popular with candidates, but those
who attempted it generally scored high marks. Parts (a) and (b)(i) were
particularly well done, with candidates generally confident in the calculation
of moment’s of inertia from first principles (including for the shifted axis in
(b)(i)). Some candidates made algebraic slips in part (b) leading to an
incorrect result for the limit α ≪ 1, µ ≫ 1 discussed in (b)(iv); such errors
could have been detected by realizing that this limit corresponds physically
to the classic simple pendulum and hence ω = (g/d)1/2.

Question 7. (a)(i): This was very routine and done identically and cor-
rectly by almost all candidates. (a)(ii): This was again done similarly by all
candidates, with several minor mistakes which can be made along the way:
finding the particular solution to the normalised equation with RHS 1 but
forgetting to multiply by 5 for the final answer, accidentally multiplying also
the homogeneous solution by 5, or multiplying by the hcf (7) rather than by
5. One can also include the detail that the equation 37x+71y = 0 has only
the solutions (71,−37)Z specifically because 71 and 37 are coprime. (b), 1st

part: It was clear that 1
p was a fixed point of the RHS g(x), or equivalently

a root of g(x) − x after taking the limit on both sides of the equation; the
latter was done with varying levels of rigour, with some candidates making
claims such as xk+1 → xk as k → ∞. Many tried to find an interval around
1
p to which to apply the contraction mapping theorem, although this was not



necessary. Note that Horner’s method is not relevant. (b): 2nd part: Many
candidates were not confident with calculating the order, so just stated a
claim as to what it was, intuiting that it is likely cubic due to the cubic
polynomial. A good solution was to Taylor expand g(x) about 1

p (in fact

to 3rd order this will be exact, since it is already a cubic polynomial) and
observe that g′(1p) = g′′(1p) = 0. An even neater solution was to notice that

subtracting 1
p from g(x) factorises nicely to give∣∣∣xk+1 − 1

p

∣∣∣∣∣∣xk − 1
p

∣∣∣3 = p2.

(c)(i), 1st part: This was mostly done well, apart from a few candidates
who defined the gradient and Hessian with entries using the full derivative
d rather than the partial derivative ∂. Some candidates gave the transpose
of the Hessian rather than the Hessian, or (almost universally) forgot that
it is not a priori symmetric. (c)(i), 2nd part: This was done well as it
just required stating the formula, but care should be taken to specify that
both the Hessian and gradient are evaluated at the current iterate xk (even
though in (ii), the Hessian turns out to be constant). Several other mistakes
were possible when stating this formula, such as ‘dividing’ by the Hessian
matrix rather than applying its inverse, dividing the gradient term by F ,
and using xk in place of ∇F (xk) (which may be an easy mistake to make
since they are both vectors). (c)(ii): Candidates should state that the first
iterate found, x1 = (0, 1), is either a critical point, or a fixed point of the
iteration, so that no further Newton steps are needed. Many silly mistakes
where made which caused candidates to do several Newton iterations rather
than just one, such as using a plus sign in the Newton formula in place
of a minus, miscalculating the Hessian due to several ±4 entries in ∇F
(which made candidates calculate the off-diagonal entries of the Hessian
as 0), and many, many candidates computed the inverse of the Hessian
incorrectly by computing its determinant to be 24+ 16 rather than 24− 16.
No candidate explicitly made the observation that since F is quadratic, its
criticality condition is linear, so that Newton is guaranteed to converge in
one step.

Paper V

Question 1. For 1(a)(ii), a common mistake was to differentiate x = r
cos(theta) and y = r sin(theta) as if r was a constant on theta. It turns out
that these two mistakes compensate, those who did them did not receive full
credit, even though they got the right result.

The simplest way of solving 1(b)(i) was to parametrize the curve C and
apply the fundamental theorem of calculus. Some candidates attempted



to treat this question using the Kelvin-Stokes formula, but failed to give
a fully rigorous proof. In particular, the existence of a surface S bounded
by C should have been addressed : if C is knotted, S might not be an
embedded disk (one could have taken a non-embedded disk, but that would
have required some explanation as well).

Most candidates succeeded in 1(b)(ii) and used the unit circle for the curve
C.

Question 2.

Question 2 was in general well received, with several students answering
all questions correctly. Part a) i) was simple and well answered. Part a)
ii) caused most problems, with a large proportion of students not even at-
tempting it. Those who did attempted it often were able to set up the proof,
introduce the two parametrisations, but were not able to correctly (and rig-
orously) show that the integral is independent of the parametrisation. Part
b) was easy, with most students getting full marks. Part c) caused minor
problems, with a small number of students incorrectly parametrising the cir-
cle or getting the wrong answer due to algebraic mistakes when evaluating
the integrals.

Question 3. Question 3 caused problems to several students. Part a) was
on average good, with several students getting full marks, although many
students failed to get the correct answer because they failed to correctly
parametrise the surface and evaluating the normal necessary to calculate
the surface integral or due to calculation errors. Part b) was the trickiest,
with only a few students getting full marks. Most students recognised that
the key to the proof was that the statement is true for all closed curves.
However, most candidates were unable to produce a rigorous proof and
were thus awarded half marks. Part c) caused minor problems, with several
students realising the need to use Stokes theorem, but still failing to prove
the identity.

Question 4. Candidates generally did not specify the function at which
it converges and did not take into account the boundary values x = 0, π.
But generally this part was done correctly. (b) (i) The main problem was in
the algebraic computations (integration, signs, constant) and to specify the
actual series after computing the coefficients. (ii) This part was relatively
fine, some candidates forgot to add the series truncated at large number of
terms. (iii) Most candidates gave a reasonable justification in terms of disco

Question 5. 5) a) This was generally well done, with most candidates
recalling the derivation of the heat equation from first principles. b) i) A
common mistake here was misidentifying the correct boundary condition
at x = 0. Many candidates applied a Dirichlet boundary condition here,
and among those who correctly applied a Neumann condition it was com-



mon to omit the constant k and hence reach an incorrect solution. ii) Most
candidates struggled with this question. In particular, a common early diffi-
culty was in finding the form of the separable solution to the heat equation
with the correct boundary conditions, while those who did this subsequently
struggled to find the coefficients of the Fourier series. iii) Without a solution
to (ii), most candidates were unable to consider its behaviour at late times.
Those who found the solution to (ii) generally had no issues with (iii). c)
More candidates struggled with this question than expected. Identifying
the boundary conditions again caused difficulty, and while many candidates
recognised that continuity was required at x = l, fewer identified the condi-
tion required here on the derivatives of T . Those who did generally reached
the correct solution.

Question 6. Deriving the wave equation was generally well done, and most
candidates did well on this question. The most common mistake here was in
incorrectly identifying the boundary conditions. In particular, the bound-
ary condition at x = 0 was frequently misidentified. b) Most candidates
struggled with this question, particularly at the early stages. In particular,
many candidates ignored the prompting of the question to consider differ-
ent separable solutions for positive and negative x and as such immediately
ran into problems finding solutions to the equation. Those who did often
used incorrect boundary conditions to identify the Fourier coefficients. Few
candidates identified the correct equations for the allowed frequencies of the
wave, or explained why there must be infinitely many solutions. c) Given
the difficulties with (b), most candidates were unable to attempt (c).

Ḣ

H
=

Fxx

F
− 1 = ω.

Not relabelling ω + 1 = ω̃ led to a significant number of sign errors in the
solution for H. Another common issue was using a generic Fourier series
coefficient formula integrated over −π to π; the question needed this to be
derived which only a handful of candidate did. Overall, many candidates
did present good solutions to the question.
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