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A. STATISTICS

179 candidates in Mathematics and Mathematics & Statistics were awarded
an overall year outcome. Candidates on both degrees submit the same as-
sessments and no distinction is made between the two groups in this docu-

ment.
Table 1: Numbers in each outcome class
Numbers Percentages

2025 2024 (2023) (2022) (2021)]2025 2024 (2023) (2022) (2021)
Distinction | 52 (57) (52) (53)  (60) [29.05 (31.67) (29.21) (29.78) (30.61)
Pass 115 (109) (113) (116) (124) |64.25 (60.56) (63.48) (65.17) (63.27)
Partial Pass| 9  (10) (11) (6) (7) | 5.03 (5.56) (6.18) (3.37) (3.57)
Incomplete 0 (0) (0) (0) (2) |0.00 (0.00) (0.00) (0.00) (1.02)
Fail 3 (4) (2) (3) (3) | 1.68 (2.22) (1.12) (1.69) (1.53)
| Total | 179 (180) (178) (178) (196) | 100 (100) (100) (100) (100) |

B. NEW EXAMINING METHODS AND PROCEDURES

None.

C. CHANGES IN EXAMINING METHODS AND PROCE-
DURES CURRENTLY UNDER DISCUSSION OR CONTEM-
PLATED FOR THE FUTURE

None.



D. NOTICE OF EXAMINATION CONVENTIONS FOR CAN-
DIDATES

The Notice to Candidates, containing details of the examinations and as-
sessments, was issued to all candidates at the beginning of Trinity term.
The Examination Conventions in full were made available at

https://www.maths.ox.ac.uk/members/students/undergraduate-courses/
examinations-assessments/examination-conventions.
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Timetable

The examinations began on Monday 23rd June and ended on Friday 27th
June.

Setting and checking of papers

The Moderators set and checked the questions, model solutions, and mark
schemes. Every question was carefully considered by at least two modera-
tors, and feedback was sought from lecturers. In a small number of cases
feedback from lecturers was not available, and those were discussed in more
detail until the Board of Moderators was satisfied that all questions were
appropriate.

The questions were then combined into papers which were considered by the
Board of Moderators and small changes were made to satisfy the Board that
the papers were appropriate. After this a final proof-reading of the papers
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was completed before the Camera Ready Copies (CRCs) were produced.
The whole Board of Moderators signed off the CRCs which were submitted
to Examination Schools.

Marking and marks processing

The Moderators and Assessors marked the scripts according to the mark
schemes and entered the marks. Small adjustments to some mark schemes
were made at this stage, and care was take to ensure these were consistently
applied to all candidates.

A team of graduate checkers, supervised by the Academic Admin Team
sorted all the scripts for each paper and carefully cross checked these against
the mark scheme to spot any unmarked parts of questions, addition errors,
or wrongly recorded marks. A number of errors were corrected, with each
change checked and signed off by a Moderator, at least one of whom was
present throughout the process.

Determination of University Standardised Marks

Marks for each individual assessment are reported as a University Standard
Mark (USM) which is an integer between 0 and 100 inclusive. The Mod-
erators used their academic judgment to map the raw marks on individual
assessments to USMs using a process similar to previous years. In com-
ing to this judgement the board followed the advice from the Mathematics
Teaching Committee that the percentages awarded for each USM range of
the examination should be in line with recent years. This alignment can be
seen in Table [I} in more detail, for Papers -V, a piecewise linear map was
constructed as follows:

1. Candidates’ raw marks for a given paper were ranked in descending
order.

2. The default percentages p; of Distinctions and po of Nominal Upper
Seconds were selected.

3. The candidate at the p; percentile from the top of the ranked list was
identified and assigned a USM of 70, and the corresponding raw mark
denoted R;.

4. The candidate at the (p; + p2) percentile from the top of the list was
assigned a USM of 60 and the corresponding raw mark denoted R.

5. The line segment between (R1,70) and (Rg, 60) was extended linearly
to USMs of 72 and 57 respectively, and the corresponding raw marks
denoted C and Cs respectively.



6. A line segment through (C,57) was extended towards the vertical
axis, as if it were to join the axis at (0, 10), but the line segment was
terminated at a USM of 37 and the raw mark at the termination point
was denoted Cs.

With these data a piecewise linear map was constructed with vertices at

{(0,0), (C3,37), (Cs,57), (C1,72), (100,100)}.

Reports from the Assessors describing the apparent relative difficulty and
the general standard of solutions for each question were then considered,
and the Board decided that the values of p; = 31% and py = 48% were
suitable for all papers.

In line with previous years, for the Computational Mathematics assessment
the linear map with gradient 2.5 was used to map from raw marks to USMs.

The vertices of the final maps used in each assessment are listed in Table

Table 2: Vertices of final piecewise linear model

] Paper | Vertices ‘

I 0;,0] 22:37 | 35:57 |66.4;72]100;100
11 0;0| 28:37 |49.4;57|82.4;72|100;100
I |0:0] 33.5:37 |60.3;57 | 88.8;72 | 120;100
IV |0;0] 18.9;37 |32.9;57|58.4;72| 80;100
V. 0;0]19.47;37|33.9;57| 59.4;72| 80;100
CM |0;0] 40;100

With the USMs, a provisional outcome class for each candidate was produced
as follows: Write M I, MII, MIII, MIV and MV for the USMs on Papers
I-V respectively, and C'M for the USM on the Computational Mathematics
assessment. Write Avq and Awvy for the quantities

MI + MII+ SMIIT+ MIV 4+ $MV + {CM
5l
3

and
MI + MII + $MIIT + MIV + $MV

5

respectively, symmetrically rounded. With these auxiliary statistics the pro-
visional outcome class was determined by the definitions:

Distinction: both Av; > 70 and Avy > 70 and a USM of at least 40 on
each paper and for the Computational Mathematics assessment;

Pass: not a Distinction and a USM of at least 40 on each paper and for
the Computational Mathematics assessment;



Partial Pass: not a Pass or Distinction and a USM of at least 40 on three
or more of Papers [-V;

Fail: not a Partial Pass, Pass, or Distinction, and a USM of less than 40
on three or more of Papers I-V.

The scripts of those candidates at the boundaries between outcome classes
were scrutinised carefully to determine which attained the relevant quali-
tative descriptors and changes were made to move those into the correct
class.

Mitigating Circumstances were then considered using the banding produced
by the Mitigating Circumstances Panel, and appropriate actions were taken
and recorded.

Table gives the rank list ordered by the average of Av; and Avs (as defined
above), showing the number and percentage of candidates with USM greater
than or equal to each value.

Table 3: Rank list of average USM scores

Candidates with USM > x
’USM (z) \Rank Number Percentage

92.08 1 1 0.56
91.56 2 2 1.12
89.6 3 3 1.68
88.7 4 4 2.23
87.44 5 5 2.79
86.76 6 6 3.35

86 7 7 3.91
84.04 8 8 4.47
83.88 9 9 5.03
83.72 10 10 5.59
83.11 11 11 6.15
82.6 12 12 6.7
81.36 13 14 7.82
81.36 13 14 7.82
80.56 15 15 8.38
79.84 16 16 8.94
79.44 17 18 10.06
79.44 17 18 10.06
79.31 19 19 10.61
79.24 20 20 11.17
78.6 21 21 11.73
77.6 22 22 12.29
75.84 23 23 12.85




Table 3: Rank list of average USM scores (continued)

Candidates with average USM > z
’USM () \Rank Number Percentage

75.21 24 24 13.41
74.84 25 25 13.97
74.76 26 26 14.53
73.64 27 27 15.08
73.56 28 28 15.64
73.4 29 29 16.2
73.24 30 31 17.32
73.24 30 31 17.32
73.12 32 32 17.88
72.72 33 33 18.44
72.56 34 34 18.99
72.52 35 35 19.55
72.24 36 36 20.11
72.12 37 37 20.67
72 38 38 21.23
71.84 39 39 21.79
71.76 40 41 22.91
71.76 40 41 22.91
71.72 42 42 23.46
71.56 43 43 24.02
71.44 44 44 24.58
71.16 45 45 25.14
71.12 46 46 25.7
70.64 47 47 26.26
70.61 48 48 26.82
70 49 49 27.37
69.84 50 50 27.93
69.64 51 51 28.49
69.56 52 52 29.05
69.48 53 53 29.61
69.44 54 54 30.17
69.2 55 55 30.73
68.84 06 57 31.84
68.84 56 57 31.84
68.74 58 58 32.4
68.48 59 59 32.96
68.4 60 60 33.52
68.04 61 61 34.08
67.92 62 62 34.64
67.84 63 63 35.2




Table 3: Rank list of average USM scores (continued)

Candidates with average USM > z
’USM () \Rank Number Percentage

67.64 64 64 35.75
67.24 65 65 36.31
67.16 66 66 36.87
67.08 67 67 37.43
67.01 68 68 37.99
67 69 69 38.55
66.96 70 70 39.11
66.88 71 71 39.66
66.84 72 72 40.22
66.8 73 73 40.78
66.64 74 74 41.34
66.16 75 75 41.9
66.08 76 76 42.46
65.76 77 77 43.02
65.68 78 78 43.58
65.64 79 79 44.13
65.56 80 80 44.69
65.44 81 81 45.25
65.3 82 82 45.81
65.28 83 83 46.37
65.16 84 84 46.93
65.15 85 85 47.49
65.12 86 87 48.6
65.12 86 87 48.6
65.04 88 88 49.16
64.96 89 89 49.72
64.88 90 90 50.28
64.68 91 91 50.84
64.52 92 92 51.4
64.48 93 93 51.96
64.4 94 95 53.07
64.4 94 95 53.07
64.24 96 96 53.63
64.12 97 97 54.19
64.08 98 98 54.75
64.04 99 99 55.31
63.95 100 100 55.87
63.88 101 102 56.98
63.88 101 102 56.98
63.84 103 103 57.54




Table 3: Rank list of average USM scores (continued)

Candidates with average USM > z
’USM () \Rank Number Percentage

63.8 104 104 58.1
63.64 105 106 59.22
63.64 105 106 59.22
63.52 107 108 60.34
63.52 107 108 60.34
63.44 109 109 60.89
63.4 110 110 61.45
63.36 111 111 62.01
63.04 112 112 62.57
62.92 113 113 63.13
62.88 114 114 63.69
62.84 115 115 64.25
62.68 116 116 64.8
62.32 117 117 65.36
62.12 118 118 65.92
61.92 119 119 66.48
61.84 120 120 67.04
61.8 121 122 68.16
61.8 121 122 68.16
61.76 123 123 68.72
61.44 124 125 69.83
61.44 124 125 69.83
61.29 126 126 70.39
61.24 127 127 70.95
61.2 128 128 71.51
60.72 129 129 72.07
60.68 130 130 72.63
60.56 131 131 73.18
60.48 132 132 73.74
60.32 133 134 74.86
60.32 133 134 74.86
60.28 135 135 75.42
60.16 136 136 75.98
59.84 137 137 76.54
59.8 138 138 77.09
59.56 139 140 78.21
59.56 139 140 78.21
58.88 141 141 78.77
58.72 142 142 79.33
58.6 143 143 79.89




Table 3: Rank list of average USM scores (continued)

Candidates with average USM > z
’USM () \Rank Number Percentage

58.44 144 144 80.45
58.32 145 145 81.01
58.16 146 146 81.56
58.12 147 147 82.12
58 148 148 82.68
57.9 149 149 83.24
57.76 150 150 83.8
57.72 151 151 84.36
57.6 152 152 84.92
56.6 153 154 86.03
56.6 153 154 86.03
56.16 155 155 86.59
56.1 156 156 87.15
56.04 157 157 87.71
55.4 158 158 88.27
55.04 159 160 89.39
55.04 159 160 89.39
54.56 161 161 89.94
54.25 162 162 90.5
54.19 163 163 91.06
52.92 164 164 91.62
52.6 165 165 92.18
52.28 166 166 92.74
51.88 167 167 93.3
51.4 168 168 93.85
51.08 169 169 94.41
51.04 170 170 94.97
47.32 171 171 95.53
46.08 172 172 96.09
45.48 173 173 96.65
41.64 174 174 97.21
41.48 175 175 97.77
37.64 176 176 98.32
34.76 177 177 98.88
27.53 178 178 99.44
9.48 179 179 100




B. EQUAL OPPORTUNITY ISSUES AND BREAKDOWN
OF THE RESULTS BY GENDER

Table 4 shows the performances of candidates by gender. Here gender is the
gender as recorded on eVision.

Table 4: Breakdown of results by gender

Outcome Number

2025 2024 2023 2022

Female | Male | Total | Female | Male | Total | Female | Male | Total | Female | Male | Total

Distinction 3 49 52 4 53 57 9 43 52 8 45 53
Pass 37 78 | 115 35 74 | 109 38 75 | 113 43 73 | 116
Partial Pass 3 6 9 2 8 10 4 7 11 2 4 6
Incomplete 0 0 0 0 0 0 0 0 0 0 2 2
Fail 1 2 3 1 3 4 1 1 2 0 3 3
| Total | 44 [135 [ 179 | 41 [ 138 [ 180 [ 52 [ 126|178 | 53 | 125 [ 178 |
Outcome Percentage

2025 2024 2023 2022

Female | Male | Total | Female | Male | Total | Female | Male | Total | Female | Male | Total
Distinction | 6.82 | 36.3 {29.05| 9.52 |[38.41|31.67| 17.23 |34.15|29.21| 15.09 |36.00|29.78
Pass 84.09 |57.78|64.25| 83.33 |53.62|60.56| 73.08 |59.52|63.53| 81.13 |58.40|65.17
Partial Pass| 6.82 | 4.44 | 5.03 | 4.76 5.8 [ 5.56 | 7.69 |5.56 | 6.17 | 3.77 | 3.20 | 3.37
Incomplete | 0.00 | 0.00 | 0.00 | 0.00 | 0.00| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Fail 227 | 148 | 1.68 | 238 |217|222| 1.92 |0.79|1.12| 0.00 | 2.40 | 1.69

C. STATISTICS ON CANDIDATES’ PERFORMANCE IN
EACH PART OF THE EXAMINATION

Table 5: Numbers taking each paper

Paper | Number of | Average Std dev of | Average Std dev of
Candidates | raw mark raw marks| USM USMs

I 178 52.53 16.05 65.06 11.25

II 178 66.89 17.46 65.62 12.63

111 178 75.61 17.81 65.44 11.94

v 179 46.9 13.48 64.81 12.72

A% 179 47.55 13.18 65.27 11.95

CM 179 32.87 5.51 82.02 14.11

Tables give the performance statistics for each individual assessment,
showing for each question the average mark, first over all attempts, and
then over the attempts used; the standard deviation over all attempts; and
finally the total number of attempts, first those that were used, and then
those that were unused.



Table 6: Statistics for Paper 1

Question | Average mark | Std | No. of Attempts
Number | All  Used |dev|Used Unused
Q1 12.58 | 12.58 |4.42| 173 0
Q2 12.81| 12.81 |4.41| 159 0
Q3 9.53 | 9.55 [4.35| 137 1
Q4 9.37 | 9.37 |3.77| 65 0
Q5 9.17 | 9.17 |3.54| 166 0
Q6 9.36 | 9.36 [4.24| 109 0
Q7 8.56 | 8.56 [4.64| 79 0

Table 7: Statistics for Paper II

Question | Average mark | Std | No. of Attempts
Number | All Used |dev |Used Unused
Q1 13.9 | 13.9 |3.86| 112 0
Q2 12.53| 12.52 |3.58| 87 1
Q3 15.13| 15.13 |3.91| 157 0
Q4 10.28 | 10.39 |5.42| 71 1
Q5 14.82| 14.87 |4.05] 145 1
Q6 13.98| 13.98 |4.86| 139 0
Q7 11.83| 11.83 |5.17| 173 0
Table 8: Statistics for Paper I11
Question | Average mark | Std | No. of Attempts
Number | All  Used |dev|Used Unused
Q1 13.59| 13.65 [4.16| 158 1
Q2 14.74| 14.74 [3.12| 58 0
Q3 14.86| 14.94 |3.74| 139 1
Q4 10.64| 10.64 | 4 | 107 0
Q5 11.18| 11.18 |3.24| 144 0
Q6 12.98| 12.98 |3.78| 104 0
Q7 13.77| 13.77 |5.01| 133 0
Q8 11.13| 11.16 |5.04| 156 1
Q9 12.26| 12.26 [4.07| 57 0

Table 9: Statistics for Paper IV




Question | Average mark | Std | No. of Attempts
Number | All  Used |dev|Used Unused

Q1 10.56| 10.79 | 4.3 | 43 2
Q2 12.14| 12.14 |3.78| 155
Q3 10.35| 10.36 |3.81| 159
Q4 10.03] 10.16 |5.88| 85
Q5 14.91| 14.91 |3.92] 171
Q6 10.75] 10.75 |5.17| 92

O O N = O

Table 10: Statistics for Paper V

Question | Average mark | Std | No. of Attempts
Number | All  Used |dev|Used Unused

QL | 972 982 [4.97] 133 2
Q2 |12.75| 12.8 | 4.3 137
Q3 12 | 12.15 |5.55| 88
Q4 | 14.6| 146 [3.03| 179
Q5 |9.66| 9.66 |5.13| 148
Q6 [10.75| 11.33 |6.36] 30

OO N

Table 11: Statistics for Computational Mathematics

Question | Average mark | Std | No. of Attempts
Number | All  Used |dev|Used Unused

Project A| 17.4 | 174 |2.55| 144 0
Project B|16.48| 16.48 [3.66| 50 0
Project C|15.67| 15.67 |3.19| 163 0

D. COMMENTS ON PAPERS AND ON INDIVIDUAL QUES-
TIONS

Paper 1

Question 1. The bookwork questions part (a)(i) and (a)(ii) were attempted
by all students that chose Question 1 and were generally correct, with very
few exceptions. Part (a)(iii) had a good number of correct solutions. Many
solutions went through some unnecessary steps, for example checking that
det(C') # 0 even after having exhibited a matrix D such that CD = DC = 1.
The most common mistake was using that det(A 4+ B) = det(A) + det(B),
which is not a true property of the determinant.

Part (b)(i) had attempts of solutions by a great number of students, and
around half of those attempts were correct proofs. The main challenge of
the question was proving that S (or T) was invertible. Many candidates
assumed this without any proof, or provided an incorrect proof of it. This
question also unveiled some lack of understanding of fundamental concepts in
linear algebra by some candidates, that should be addressed before the next



linear algebra course. In particular, one (concerningly common) mistake was
confusing idy with the 0 map, and providing a (wrong) proof of the (false)
statement that 7'S = 0 implies ST = 0. Part b(ii) had many solutions
or partial solution, with a wide range of different methods. The main two
strategies were finding an inverse directly using the factorization of (1 —L™),
and using (a)(iii) with the polynomial p(z) = (z — 1)". With the first
approach, several students had some struggles with the signs, sometimes
dividing in two (almost identical) cases, depending if n was even or odd, but
sometimes only providing a solution to one of the two. The main mistake
for the second approach was forgetting to verify that the constant term of
the polynomial was not 0 (which was sometimes non-trivial, depending on
how the polynomial was defined). Another common approaches to prove the
invertibility of L+ (without finding the inverse) were to verify it has trivial
kernel, ultimately proving that an element of the kernel of L 4+ I would be
a (-1)-eigenvector for L, which is in contradiction to the fact that L™ = 0.

Question 2. Part (a) was generally done well. Some candidates did not
write a correct definition of a subspace and sometimes the nonemptiness
condition was omitted from an otherwise correct definition. Some candidates
only stated and proved the subspace test in one direction. Part (b) was also
mostly done well with the exception of part (b)(i) with a large number of
candidates incorrectly writing that it is a basis of V' . Often in part (b)(iii),
candidates did not justify linear independence or that the set spans, often
only writing that it is clear.

Question 3. There were perhaps more issues than expected with the book-
work, with many ommitting details in (a)(i) such as invertibility of P. Occa-~
sional confusion would arise between being diagonalisable and being orthog-
onally diagonalisable, which caused issues in proving the equivalent condi-
tion in (a)(ii). The most common missing detail in this part was a justifying
why the columns of P were linearly independent, or why P is invertible
in the other direction. Some candidates mentioned Gram—Schmidt, which
was irrelevant here but did highlight a general misunderstanding about or-
thogonality of vectors in different eigenspaces. The final part of (a) was
generally done well, with most opting for a determinantal approach via the
characteristic polynomial.

In (b), a fairly common oversimplification was to deduce A = £AI by fac-
torising A? — A\2I = 0. Similarly, the most frequent misunderstanding was
that any v € V would lie in precisely one of the kernels, despite most vec-
tors actually not lying in either. In this way many claimed that V was the
disjoint union of the two eigenspaces, which is not a vector space in general.
Most found the intersection of the kernels to be trivial (or even empty, with
the above confusion), but applying the hint was less consistent. Those who
started by writing out the definition of a direct sum were less prone to the



above misunderstandings. The conclusion regarding the diagonalisabiltiy of
A was quite often ommitted.

There were two recurring misunderstandings in (c)(i), a question in which
many candidates did not make much of an attempt. The first was to continue
asumming that A2 = A\2J on the entirety of V, as opposed to observing a
similar property held after restricting to each eigenspaces following the hint.
With more subtlety, the second was to start with P~ A2P = (P~1AP)%? = D
and then “square root” to obtain a diaognal form for P~'AP. However
this does not neccesarily follow, as there are non-diagonal matrices M for
which M? is diagonal. For (c)(ii), candidates’ intuition was generally correct,
but not all provided justified counterexamples, and it was common to see
proposed invertible matrices A that were actually diagonalisable.

Question 4. The bookwork in (a) was carried out generally well, with some
rare ommissions of orthogonality for P in the Spectral Theorem and a few
more cases of writing W7 UWs instead of W71 4+ W5 in the dimension formula,
the former not being a vector space in general. The dimension formula was
almost always applied in the correct way, however. For (a)(iii), a common
approach was to use rank A = rank D from the diagonalisabiltiy of A, but
the details on why the ranks coincided were inconsistent. Indeed, a mis-
conception arose that similar matrices are row equivalent, which is not the
case in general. Some saw the use of the term “multiplicity” and included a
discussion on algebraic and geometric multiplicity for the eigenvalues, which
was not really required here. The final part of (a) was fairly strong, espe-
cially in the converse direction where the candidates could use any nonzero
vector to gain information. For the other direction, one technique was to
write 2T Az = 27 Az = Xz, but not all gave full detail on why restricting
to eigenvectors was sufficient, or why this was strictly positive.

Whilst the start of (b) was done well and many applied (a)(iii) correctly, the
hint in (b)(i) was frequently disregarded, with some opting to diagonalise A
and B separately, leading to confusing notation. In (b)(ii), imprecise terms
such as “negative eigenvectors” were common, and defintions for the space
N4 were often unclear. Those who defined it directly as a span had the most
success, with other candidates attempting to prove that there was such a
subspace N4 by checking the vector space axioms. Almost no candidates
found a suitable choice of Wa, with the closest being a space Pp spanned by
the eigenvectors of B with positive eigenvalues, stopping short of “pulling
this back” to the level of A.

Question 5. This was the most popular question. Good answers on the
bookwork in part (a) including the variation on the subgroup test in (a)(iii).
Many candidates struggled in computations with permutations in part (b)
despite this part appearing on problem sheet 2. Some candidates attempted
induction which can be made to work but very few gave a correct proof in



this way.

Part (c)(i) was generally answered well using the hint. Many students gave
explicit elements b and ¢ with bc = (12---n) but arguing with Dy, consid-
ered as a subgroup of S, and deducing the existence of b, ¢ with a simple
picture of reflections was sufficient.

Part (c)(ii) had very few complete solutions, all using the order of the cyclic
subgroup (ab) < S,, in some form. A common error was to assume that a
and b must be transpositions of S,.

Question 6. A popular question. Part (a) was done well by most. In
part (b)(ii) many candidates just wrote the map f but did not check that
it is indeed a homomorphism. Part (¢)(i) was answered well by many who
observed that an inner automorphism of D,, must send 7 to r*! and hence
chose f(r) & {r,r~1}. Part (c)(ii) had few rigorous answers, some candidates
tried to argue vaguely with conjugacy classes of Dg but did not consider all
possibilities for f € Aut(G).

Question 7. This was the least popular question of Section B. Part (a) was
well done. Surprisingly few managed to answer part (b) despite observing
that different subgroups of size p must intersect only at the identity.

Part (c)(i) had a few good answers. One approach was to argue that if G
has two different subgroups Hy # Hj of size p then |HiHy| = p* > |G|,
contradiction.

Part (c)(ii) had a handful of correct solutions, some following the model
solution, while others considered the conjugation action of a subgroup K of
size ¢ on the normal subgroup H with |H| = p from (c)(i).

Paper 11

Question 1. (143 attempts): The general level of solutions was good. In
(a)(i), many candidates either missed the assumption that x > -1, or did
not mention that multiplying by  + 1 > 0 preserved the inequality. In
(a)(ii), several candidates did not work out N such that ¢" < e for n > N.
Some solutions relied on existence and properties of the logarithm function,
which did not follow the structure of the course (this part was bookwork).
Solutions for (a)(iii) were generally correct. In part (b), most candidates
got the main ideas of applying (a)(iii) and the integral test. However, many
solutions did not check or mention that loglog2 < 0.

Question 2. (141 attempts): The general level of solutions was good. In
(a)(i), some candidates missed out the possibility that A could be finite, or,
equivalently, assumed there was a bijection with N instead of an injection.
In (a)(ii), many candidates failed to mention that R was infinite and how to



obtain a bijection with N from an injection. Furthermore, some candidates
did not properly deal with the possibility of real numbers having different
decimal expansions. Solutions for (a)(iii) were typically correct, though
many candidates assumed that algebraic and transcendental numbers were
real, as opposed to complex. In part (b)(i), some candidates incorrectly
concluded that A \(z - €, x + €) = {al,...,an—_1}. Part (b)(ii) proved to be
difficult. There were several correct solutions. However, many solutions only
produced countably many sets, with some indexed infinitely many times.

Question 3. 3(a)(i) — no problems in general. Some students wrote » ay,
converge iff Y x,, and >y, converge, where a,, = z,, + iy,.

3(a)(ii) — also no problems in general. Again, some use the decomposition
an = Tp + 1Y, unnecessarily and unsuccessfully.

3(a)(iii) — quite a few students decided to get a lower bound 0 < sin ay
by taking a sufficiently small ay (|ax| < 1 was a popular choice somehow)
instead of working with |sin ag|.

3(b)(i) — almost everyone get the radius of convergence but the most common
mistake was to forget the & = 0 term of the series and get e** instead of
4z

e —1.

3(b)(ii) — a lot of students unnecessarily computed the radius of convergence.
Many did not use the differentiation theorem.

Question 4. 4.(a) This was answered by essentially everyone using the e,
d-definition.

(b) This question was also answered correctly by a vast majority. Most
students showed that the sequence must have a convergent subsequence
to a point ¢ in the interval [a,b] and using the fact f is continuous the
result follows. Some people did not have the full 6 marks because they
forgot to say why the convergent point of the subsequence is in [a,b] (as
it is closed). Very few argued that since [a,b] is connected then the image
by a continuous function is also a connected set so it must be an interval.
Moreover, the image of a compact set is compact as f is continuous, so it
attains a maximum and a minimum, so ¢ € f(]a,b]).

(c) Essentially everyone knew heuristically why f had to be bounded. Many
tried and some succeed to prove it directly. I did not give full marks if they
did not know how to reduce the problem to applying the previous question
as a black box (as requested).

(d) This question stumped many of the students. Few were able to argue
completely correctly why (i) was true. I would say thirty-five percent realized
that the sequence z,, = 27 n satisfies x, 1 > =, + 1/2, provided n is large



enough, but failed to explain why does this, per se, shows that f — oo as x
— 0.

(ii) This caused even more challenges to most students. A large proportion
did not attempt it at all. Many who attempted gave wrong counterexamples
(f was not continuous). Those who solved correctly constructed a very
slowly growing function f i.e. f(z) = loglog(1/x) or more explicitly using
the divergence of ) . 1/i e.g. Interpolating with linear functions between
the points (27", Y., 1/i)

Question 5. This question was very popular and was generally done very
well. In (b)(i) several students noted that cos(y/z) was in fact Lipschitz con-
tinuous (proved either by differentiation, or by using various trig identities
and inequalities), and then stated that this implies uniform continuity. This
is more complicated than the model solution, but very much acceptable as a
solution. Part (c)(ii) was probably the most difficult part with a number of
students stating incorrectly that a power series converges uniformly inside
its radius of convergence. In part (d), students often did not make it clear
that n > N needs to be chosen before §. Some even seemed to assume
that the same ¢ in the definition of uniform continuity applied to all the f,,.
Quite a few students did not do part (e), or just guessed the answer without
providing the counterexample.

Question 6. This question was also very popular and was generally done
well. In part (a) the main mistake was to misstate Rolle’s Theorem, either
(unnecessarily) requiring f(a) and f(b) to be zero, or only stating that
¢ € la,b] rather than £ € (a,b). While most students did (b)(i) correctly,
there were quite a few students who tried to go back to the definition of a
derivative and just stated that lim,_,,,(f(z) — f(z0))/(z — z¢) > 0 implied
that (f(z) — f(z0))/(z — x0) is always non-negative. Students lost one
mark if they assumed without proof that f > 0 on an interval implied
f is increasing, as it should be clear that this was part of what needed to be
proved. Quite a few students had difficulty applying (b)(i) to (b)(ii), often
trying to bound both sides separately. Many students had problems with
the algebra in part (c), although usually the strategy employed was correct.

Question 7. Part (a) was largely done well. Part (b) was also done well
with the exception that most candidates did not clearly state the results
they used, either just referring to them by name or not at all. For part (c),
some candidates used an infinite geometric series. Part (d) was done very
well. Part (e) caused a lot of difficulties. Some candidates wrote that the
series does not converge uniformly and most candidates that did write that
it does converge did not correctly justify it.



Paper II1

Question 1. Many candidates attempted Question 1, but a significant pro-
portion did not complete it. The parts that were attempted were generally
done well. Most of the mistakes were minor computational errors in the first
and second subquestions. Several students performed extremely well on this
question, with some achieving full marks.

Question 2. Nearly all candidates were able to correctly complete part (a).
In part (b), curves (i) and (ii) were usually handled correctly in parabolic
coordinates, though curve (iii) proved more challenging, often due to al-
gebraic difficulties. The final part of the question caused some confusion:
many candidates did not realise it was asking for the area enclosed by all
three curves, and instead attempted to compute areas related to each curve
individually. This approach often led to results that didn’t align with the
intent of the question.

Question 3. Candidates had few problems on their bookwork; nearly all
who attempted to solve part (a) could identify critical points by the simulta-
neous vanishing of partial derivatives and that they could characterize each
critical point by inspecting the Hessian. The most common issues arose from
numerical errors and failing to include the maximal value of the function.

Most candidates were able to successfully set up the optimization problem
for part (b) via Lagrange multipliers and recognize the role of the Lagrange
multiplier in implementing the constraint z2 + y? + 22 = a%. Aside from
numerical errors, a large fraction of candidates implicitly assumed the non-
vanishing of one or more coordinate functions and then proceeded to solve
the critical point equations, thereby missing the critical points for vanishing
Lagrange multiplier A = 0 which lie at the poles x = y = 0. With that
in mind, candidates were largely successful in solving for the critical points
with non-vanishing Lagrange multiplier A # 0 but many included solutions
with imaginary values of z,y, i.e. when z > 0. As with part (a), numerous
candidates stopped at the identification of the critical points and failed to
include the critical values of the function.

Question 4. While this question was chosen by a substantial number of
students, overall, students found this question harder than anticipated lead-
ing to a very wide spread of marks including a small number of (almost)
perfect scores, but also many single-digit scores. It looked like some spent
too long writing out detailed justifications in (a) leaving too little time for

(b).

While most students scored the two marks in (a)(i), a significant number
of students missed the fact that changing the order of pairs or the order of
colleges within pairs does not change the pairing in (a)(ii) and some lost



further marks in the later parts of (a)(ii). Also a significant number of
students did not spot the connection of (a)(iii) to counting the number of
ways of choosing n colleges among the given 2n colleges, the RHS effectively
counting those with j Oxford and n — j Cambridge colleges, then summing
over j. A handful of students correctly used the Binomial Theorem to
evaluate the coefficient of z" in (1 + z)?® = (1 + 2)"(1 + x)" and also
scored full marks. Those who attempted an inductive proof wasted time.

In (b)(i), a variety of mistakes led to lost marks: the winner has to win
k + 1 matches, for the best college independently, each with probability
p; for the randomly chosen college, explicit calculations did not succeed,
but a number of candidates either spotted the symmetry or argued that
the uniform pick in particular picks the winning college with probability
1/2n (regardless of which it is!), others introduced notation for probability
that the ith college wins and nicely used this in an application of LTP. In
(b)(ii) many scored some marks for the definition of expectation and the
identification of some or all of the relevant probability mass function, or
indeed for correct manipulations of geometric sums (and their derivatives),
but few put this together correctly to find the expected number of matches of
the best college. Some scored the further two marks for the random college
by working out the average number of matches per college!

Question 5. This was the most popular question, but the spread of marks
was rather wide again particularly towards the bottom. A significant num-
ber of students gave an incomplete statement of the LTP in (a). (b) was
mostly done well, with some mistakes in the variance calculation and miss-
ing justification in (ii). In (c) many students did not justify their answer,
and some seemed unsure about the concept of order in (i), but (ii) was often
done well up to the point where repeated roots (notably 1) were to be dis-
cussed. In (iii), many had the right idea but struggled with the argument.
(d) was done by a good number of students, but some left this blank or were
unsure what quantity satisfies the recurrence relation.

Question 6. This question was also chosen by a substantial number of
students and obtained a good spread of marks with quite a few perfect or
near-perfect answers. Some students lost a mark or two failing to state the
assumptions of the Weak Law of Large Numbers or getting the statement
muddled. (b) was done well by the vast majority of students, and (c) was
mostly done well, too — those who failed to acknowledge independence where
needed lost a mark. The spread of marks arose from (d) and (e) mainly.
Some candidates completed one, some the other, and there were often some
marks lost, in (d) for not checking the assumptions of the WLLN carefully
or for applying it with e = 0, which is false, in (e) candidates often got stuck
calculating the probability depending on U; and Us, where an argument
referring to the clearly specified area of a region in [0,1]? was the most



convincing, but full marks were available for all those who wrote the correct
double integral. Partial answers also received partial credit.

Question 7. Together with question 8 this was the most popular statistics
question. Students performed overall very well. (a) (i),(ii) and (iii) were
answered correctly by the vast majority of students. Some students lost
marks in parts (iv) and (vi) by considering the wrong likelihood function.
(v) was answered correctly by most students. In part (b)(i) the majority
of students was able to state the central limit theorem, some marks were
lost by not clearly stating the iid and finite variance assumption. Most
students also managed to construct the confidence interval for the Poisson
distribution whereby most of the time a mark was lost by not substituting
an estimator for the variance.

Question 8. Together with question 7 the most popular statistics question.
This question seemed to be more challenging for the students. In part (a)
the definition of the covariance was merely a problem. However, a lot of
students did not get the correct formula for the variance in part (ii). In
part (b) most students derived correctly the maximum likelihood estimators
whereby marks were lost mostly because students did not realise that a lot
of terms cancel out during the computations. Some students also struggled
with the computations of the biases and especially with the computation of
the covariance in part (iii). (c) was the most challenging part in this question
with students having problems with the computation of the covariance and
the correct application of the variance formula from part (a).

Question 9. This was the least popular question in the Statistics section,
but was chosen by about a third of the candidates. It achieved a good
spread of marks for those who seriously attempted it, including some almost
perfect answers. (a) was mostly done well, except that most students did
not identify the parameters in (a)(i). In (b), students struggled with the
sample correlation matrix in (ii), which has to be based on the sample rather
than the theoretical parameters, using the sample variance, which should be
written explicitly in terms of the data matrix, correctly mean-centred by
the sample mean, not the mean. Most students knew what to do in (iii),
but were uncomfortable with the guidance in (iv), with some reverting to
the vector differentiation method used in lectures (scoring all but one mark
if correctly completed), while expressing the Lagrange function in the form
given (with ¢ fixed!) gives an alternative approach. (c) was often done well,
although some did not label the vertical axis of the scree plot by percentages,
and some were distracted by the explicit values of A; while the reason why
they sum to 6 results from two different ways of calculating the trace of R.



Paper IV

Question 1. This was the least frequently attempted, with a somewhat
bimodal distribution that appears to contain very confident students on the
upper end, and those that were generally lost on the other.

Question 2. Most had no trouble identifying conic sections from their equa-
tions, and the vast majority received full marks on (a), which was marked
leniently, and mainly errors of oversight in (c). (b) caused more difficulty:
many students struggled to find a convenient parametrisation, or else strug-
gled to apply it successfully in the second part, or else omitted the second
part entirely. I also became somewhat concerned about integrity in (b)(i),
as many appeared to just add (=mab) on the end of a computation that
was not equal to 7*ab. Part (d) seemed to show some discomfort — most
could generate an appropriate basis, but reparametrised incorrectly. This
part may also have suffered from the time crunch (see below).

Question 3. No concerns with (a) apart from the sloppiness and lack
of detail associated with limited time. Some completed (b)(i) by working
backward from the question. I would have liked to see some citation of
uniform convergence to justify taking the transpose individually on infinite
summands in (iii), which very few did. Almost none thought to apply the
previous results to the 3-by-3 matrix, most tried computing powers and then
gave up. Lastly, in (c), apart from computational errors, a significant group
used the limit cos(a) — 1-a?/2, without noting that higher-degree terms are
dominated as the limit approaches 0.

Question 4. This was an unpopular question, though part (c) is essentially
the same as a problem sheet question for a bead on a circular hoop rotating
about a vertical axis.

Part (a) was mostly done well by those who attempted it.

Few candidates attempted part (b). The system was often sketched with the
rod above the horizontal, rather than hanging below the horizontal so the
spring force pulls the rod upwards against gravity. Most attempts had sign
errors in the torques, and some lost factors of 2. The overall gravitational
force acts through the centre of the rod (as one can verify by integrating the
gravitational force along the rod) but the spring force acts on the far end.

The angular momentum equation L = 7 gives an equation for 6. Multi-
plying by 6 and integrating with respect to time leads to the energy given
in the question. Almost all candidates who attempted this part did so by
differentiating the energy in the question instead.

Most candidates who attempted part (c) could find the equilibria at 6 =
+7/2. When mg < 2g/ there is a third equilibrium at 6 = sin=*(mg/2k¢).



Candidates who found a formula for this third solution often did not consider
whether it actually exists, i.e. whether sinf = mg/2k¢ has a real solution
for 6.

Some candidates tried to find equilibria by putting § = 0 into the undif-
ferentiated energy equation. Many wrote down conditions for stability, or
instability, without any obvious linearisation. The equilbrium at 6 = 7/2
with the rod hanging vertically downwards is stable if mg > 2k{, i.e. gravity
is stronger than the spring force, and otherwise unstable. The equilibrium
at § = —7/2 with the rod hanging vertically upwards is always unstable.
The third equilibrium at 6 = sin~!(mg/2k¢) is stable whenever it exists.

Question 5. This question was very popular, with many near-complete
solutions. In part (a) almost all candidates could show that h = r20 is
constant, but many did not even try to show that the motion lies in a plane
using conservation of the angular momentum vector. The force is directed
radially outwards from the origin, so in general it has a z component as
well as an r component in cylindrical polar coordinates. Some candidates
incorrectly asserted that Z = 0 because the force had no z component.
Moreover, the basis vector e, depends on 6 in cylindrical polar coordinates,
so r = re, + ze, does not automatically lie on a plane.

Almost all candidates got full marks for part (b).

Finding h was found most difficult in part (c¢). One can start from rf =
vsin @ by resolving the initial velocity into r and 6 components. Alterna-
tively, one can say that 7 = 0 at closest approach following the trajectory
with no force, so r = d and 76 = v. Full marks were given for either, pro-
vided they were adequately explained. Some candidates did not realise that
7 &~ —v with a minus sign as the particle is initially moving towards the
origin.

In part (d) many candidates made sign errors when substituting F'(r). Quite
a few candidates took the constant part of the solution for u to be k/h?
instead of k/(h? + €). It is easier to consider a general solution involving
sin(wh) and cos(wf) with w = /1 + €2/h but some candidates successfully

found the solution in the form cos(wf + constant) instead.

Almost all candidates who attempted part (e) found a condition for the orbit
to be bounded. The bounded orbits are ellipses, with u involving sin(w#)
and cos(w@). The solution u is 27-periodic, so the ellipses are closed, in the
Newtonian case with € = 0. The solution u is not 2m-periodic when € # 0,
so the orbits precess. The orbits are only closed if w = p/q is a rational
number, so increasing 6 by 2¢m increases wf by 2pm.

Question 6. Students generally performed well on the bookwork: most
candidates who attempted part (a) answered it correctly. The unseen part of



the question proved more challenging. In part (b), several students confused
the definitions of acceleration in inertial and non-inertial frames of reference,
which led to incorrect application of Newton’s Second Law. This, in turn,
resulted in many not correctly identifying why the Coriolis acceleration does
not appear in the derived equation. Some students also omitted the normal
force in the force balance. In part (c), most students successfully derived
the given equation for the function f(r) and the value of the integration
constant, but only a few attempted to solve for f(r), and even fewer arrived
at the correct solution.

Paper V

Question 1. The first sub-question (a), involving relatively simple integra-
tions, was generally well done. Parts (b) and (c¢) involved three-dimensional
integrations to determine volumes bounded by surfaces. Students struggled
similarly with both questions, despite the fact that part (c) was supposed
to be a little bit harder. Many students failed to adopt the right coordinate
system in order to facilitate the integrations. Part (d) involved similar cal-
culations but got on average better results as the candidates could identify
the solutions in certain limits using geometrical arguments.

Question 2. This question was overall easier than Question 1. Some stu-
dents struggled to finish the question in time, though. In part (a), most of
the students gave a full solution, but sometimes lacking rigour. The next
questions involved finding the work done in a vector field. In part (b) and
(c), most of the students made good progress, but sometimes with calcula-
tion mistakes. Part (d) was more challenging, and several students failed
to find the work done by the rotating circle, in particular by the vertical
component of the force.

Question 3.

This question was relatively unpopular. Part (a) was done well, though for
full marks candidates needed to write something about the relative orien-
tations of the line and surface integrals in Stokes’ theorem: the right hand
rule for dr and n, or alternatively that dr A n should point away from S
across its boundary.

Part (b) can be done by taking ¢ = z;x; in part (a). Many candidates used
Green’s theorem in the plane for the first part with 1 and zs. This received
full marks, though one needs to replace the 3D curve C by its projection onto
the x1x9 plane. If arguing the second part for general ¢ and j by analogy,
it is necessary to consider the cases with ¢ # j and ¢ = j separately. Some
candidates just wrote down properties of the elements of an antisymmetric
matrix M. They did not show that m;; = fc x; dx; satisfied these properties.



Almost all candidates could apply the vector triple product formula in part
(c). This gives the required integral fc r-Bdr minus another integral B fc r-
dr. Many candidates claimed that dr is perpendicular to r, which is false,
instead of using part (a) with ¢ = |r|?/2 to show that the second integral
vanishes.

Part (d) caused more difficulty. The easiest approach applies the vector
triple product formula to the given expression involving (r A dr) A B. This
gives %T from part (c) and a second integral involving —rB - dr. This
becomes the integral of +r - Bdr using part (b).

Alternatively, one can derive the given result by writing m;; = %(mz] —myi)
in part (c) using the antisymmetry from part (b), then using the vector
triple product formula backwards:

1 1
/CI'-B dr = ZmijBiej = 5 Z(mij—mji)Biej = 5 /C (I‘ -Bdr —dr- BI‘) .

%,J 1,7

Question 4. This was an extremely popular question, with all students
choosing it. The students did very well, with a high percentage of them
solving fully parts a and b. While this was expected for part a (bookwork),
perhaps part b should have been more challenging. Students also found the
first bit of part ¢ quite easy, while the second half of part ¢ (worth 5 marks)
was quite challenging. In particular, there where basically three distinct
ways to solve the second half of part ¢, but one of them (the one proposed
in the model solutions) was much simpler

Question 5. This question was also very popular, with more than 2/3
of students choosing it. Students found this question quite challenging,
although it was clear some students attempted this question with little time
left (and hence got no marks in many cases). Surprisingly, many students
failed to answer properly part a, which was bookwork. Overall Students did
well in part b, while part ¢ was more challenging, as expected.

Question 6. Few candidates attempted Q6. Part (a) was done very well.
Some candidates only attempted part (a). Those that attempted part (b)
mostly did so successfully. Few candidates completed part (c), those that
did often made good progress.
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