Boundary vorticity estimate for the Navier-Stokes
equation and control of layer separation in the
inviscid limit
Alexis F. Vasseur
The University of Texas at Austin
Joint work with Jincheng Yang

PDE WORKSHOP: Stability Analysis for Nonlinear PDEs
Mathematical Institute, University of Oxford, August 19, 2022



The equation

Consider the incompressible Navier-Stokes equation in a periodic tunnel

Q = [0,1] x T
(Ot + u” -Vu” +VPY =vAu” in (0, T) x Q
J divu” =0 in (0, T) x (NSE,))
u’ =0 on (0, T) x 09
L 1, (0, ) = u e-perturbation of Ae; in Q.

We are interesting in the inviscid limit  — 0 under the condition that v
converges to Ae; in L*(Q).
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Figure: 3D Periodic Channel




Asymptotic limit

P It is a major open problem to know whether the limit of u” converges to
Ae; for all time.
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Asymptotic limit
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Figure: Prandtl Layer

» With perturbations on the initial values, only conditional results exist.
The Kato criterion (1984) states that if, when v — 0:

]
/ / VU P dadedz —0,  [[ul—Aeizg — O,
0 {|z|<Rv}U{|1—z|<Rv}

then
u’ — Aer, in L(0, T; L*(Q)).
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Turbulence and layer separation

What if the limit does not hold ?
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Prediction of layer separation

» Formally, the asymptotic system for v = 0 is the Euler system:

Out+u-Vu+VP=0 in(0,T)xQ

divu=20 in (0, T) xQ (E)
u-n=0 on (0, T) x 0Q
u(0,-) = Ae in Q.

» The method of convex integration shows that the solution u(t, x) = Ae
of (E) is not unique (see Székelyhidi, CRAS, 2011, and
Bardos-Titi-Wiedemann, 2012 and 2014).

> For every constant C < 2, there exists a solution with layer separation for
T <1/A:

|u(T) — Aer||f2q) = CA’T.

» s it the biggest separation possible ?

Can we get some control of the layer separation at the level of the
Navier-Stokes equation?



The result

Theorem (V.-Yang, 2021)

For d = 2,3, there exists a universal constant C > 0 such that for any i
inviscid weak limit of sequences of Leray-Hopf solutions u” to (NSE,) with ug
converging to Ae; in L*(Q), we have for almost every T > 0:

|a(T) — Aerlf2q) < CA’T.

» This corresponds to the layer separation predicted by the convex
integration.



Non-uniqueness and pattern predictability

» In general, non uniqueness result by convex integration raised the
question of predictability: Why can we observe patterns 7

» The shear flow u = Ae; has an energy of

/ ul? dx = A%,
Q

while we prove that any inviscid asymptotic obtained by double limit has
an energy at time T of at most CA®T.

» Therefore, the perturbation always stays negligible on a time span
T < 1/A. This is a large time for A small (small pattern).

» It predicts the lapse of time where the pattern stays predictable.



Previous work

» Prandtl layer: existence, stability, instability: Prandtl (1904),... W.E
Engquist (97) Grenier (00), Gerard-Varet, dormy (10), Kukavica, Vicol
(13), Grenier-Nguyen (18),...., Guo, Masmoudi lyer (21)

> Extensions of the Kato criterion: Kato (84), Kelliher (08,09,17),
Bardos Titi (07, 13), Temam Wang (98), Maekawa (14), Lopes Filho

Mazzucato, Nussenzveig (08), Mazzucato taylor (08), Constantin Elgindi
lgnatova Vicol (17) Constantin Vicol (18)...

» Our result is the first non conditional result in the turbulent regime.

» An important question is whether non-unique solution can be reached as
limit of Navier-Stokes solutions.

Note that the solutions constructed by Buckmaster-Vicol (Annals of
Math 19) do not apply to this situation because:

» we consider a bounded domain with boundary,
» The Navier-Stokes solutions are suitable.



General idea

» Maekawa and Mazzucato (The inviscid limit and boundary layers for
Navier-Stokes flows ,2018):
“Mathematically, the main difficulty in the case of the no-slip boundary
condition is the lack of a priori estimates on strong enough norms to pass
to the limit, which in turn is due to the lack of a useful boundary
condition for vorticity or pressure.”

» We show a boundary vorticity control for the unscaled Navier-Stokes
equation (v = 1) that is SCALABLE through the inviscid limit (v — 0).



Why vorticity on the boundary 7

We have
d v d v d v
a”u — Aelll: = EHU 172 — 2AE /Q uy dx dz

< —v||Vu”||% + 2A/(div(u'/u1'/) + 01P — vAuy) dx
Q

< —v||[Vu”|)5 +2A | (U5 u¥) — vdsul) dx
o9

< —u||Vu|% - 2A/ WOt — Dyt dx
o

< —v||Vu" |72 — 2A/ vws dx,
89

where w” = curl u” is the vorticity of u"”.
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1., 1., v
_Hu (T) — Aelez(Q) < EHUO — Ael||i2(9) — / |VU |2 dx dt
(0, T)x0%Q

2
—A/ vwy dx dt.
(0, T)x 0%



Boundary vorticity estimate for Navier-Stokes

Theorem (Boundary Regularity)

Let Q be a periodic channel of period W and height H. There exists a
universal constant constant C depending only on the ratio W /H, such that the

following holds. For any Leray-Hopf solution u to (NSE1) in (0, T) x €, there
exists a parabolic dyadic decomposition

(0.T)x 02 =J@,

such that the following is true. Define the piecewise constant function
@:(0,T) x 02 — R by

t;
&(t,x):][_ ][ wdt
Bi Si

Then we have:

dx’, for (t,x) € @ = (s, t;) x B'.

3/2
2
< ClIVullizgo,myxe)-

oly .
“Hietma (g i 1| 137200 0.1y x0m)



Smoothing local oscillations of the vorticity

Parabolic partition of 0Q2 x [0, T] :

2Wo/2Hoy

Wo,Ho | -1

@ is the average of w on each parabolic cylinder.
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Boundary vorticity estimate for Navier-Stokes (2)

» Up to the limit case, the theorem (almost) says that for u solution to
Navier-Stokes with v =1 in (0, T /v) x Q/v = (0, T,) x ,:

T, T,
/ / > dx dt < C/ / IV ul|? dx dz dt.
0 Q. 0 Qy

» Considering u”(t,x) = u(t/v,x/v), this gives the estimates on solutions
to(NSE,):

T T
/ / i P2 dx dt < C/ /V|VUV|2 dx dz dt.
o Jog o Ja

» Therefore the boundary estimate is SCALABLE.
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» Therefore the boundary estimate is SCALABLE.

» This can be seen as an extention of the a-contraction theory first
introduced for the stability of 1-D fluid mechanics (See for instance
[Kang-V., Inventiones: 2021]).



How to conclude using the boundary estimate

» The main theorem can then be obtained as follows (up to a small time
layer at t = 0):

1 v 1,y v
EHU (T) — AGlHiZ(Q) — EHUO — AGlHiQ(Q) +/ ‘VU |2 dx dt

(0, T)x 0%
< —A/ vwy dx dt
(0, T)x 0%

- / (V&Y A dx dt
(0,T)x0%Q

~113/2 3
<e ||w||L3/2,oo((0,T)xaQ) + AT
1

—/ IVu” | dx dt + CAT.
2 J(0,7)x00
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1 v 2 1 v 2 V|2
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Boundary vorticity estimate for Navier-Stokes (3)
» Denote the energy dissipation by
D= ||VU||i2((o,T)><Q)-
If we take the curl of (NSE;), we have the vorticity equation,
Oww+u-Vw=Aw-+w-Vu.

Suppose the transport term u - Vw is well-controlled, and we ignore the
boundary effect, then the regularity we could expect for w is at best

Hvzw

L1((0,T)x Q) S flew- v”HLI((O,T)xQ) <D.

This is not rigorous because the parabolic regularization is false in L', but
let us also ignore this issue for the moment. By interpolation, we have

2 oo :
< ‘v ( ) <D.
L%((o,T)xQ) - < “ L1((0,T)><Q)) HWHLQ((O’T)XQ) B

Finally the trace theorem suggests that (again, this is the borderline case
for the trace theorem, so in no way a rigorous proof)

1

2
HV%}

lw]l?5 <D. (1)
L2 ((0,T)x8Q)



The problems: transport term and boundary

> But we cannot control the transport term v - Vw: u € L3 and
Vw e Y%7 g > 4/3 (V.-Yang (ARMA 21)).
not even close !!
» Therefore we work on u and use a blow up method introduced in
V. (Annales IHP 10) [see also Choi-V. (14)] to control higher derivatives,
following the flow at the scale of the blow-up.
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>

But we cannot control the transport term v - Vw: u € L1%3 and
Vw e Y%7 g > 4/3 (V.-Yang (ARMA 21)).
not even close !!

Therefore we work on u and use a blow up method introduced in
V. (Annales IHP 10) [see also Choi-V. (14)] to control higher derivatives,
following the flow at the scale of the blow-up.

Rely on:

» a local regularity result at the boundary, under smallness
condition on the local dissipation [ |Vul?dx dz dt <,
» and rescaling of the local regularity result through the universal
scaling for Navier-Stokes u.(t, x) = eu(&?t, ex).
Problem of boundary: without control on the pressure, the local Stokes
regularity does no hold at the boundary.

but it holds AFTER taking local mean value &.



The parabolic partition of the boundary

2Wo/2Ho

Wo/ Ho aam

\ 0o VLo T
Vit

We continue to decompose this grid of cubes based on the following property:
a parabolic cube Q with dimension 4 %Ly x 27 %W x 27%Hjy is said to be
suitable if it satisfies

f M(|Vul)dxdt < c(27¥Rg) " (S)
Q

for some ¢y to be determined. For each parabolic cube in the initial partition
Q° that is not suitable, we dyadically dissect it into 4 x 27 smaller parabolic
cubes. For each smaller cube, we continue to dissect it unless it is suitable.
This process will finish in finitely many steps, so all sufficiently small cubes are
suitable.
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Relation with the a-contraction theory with shifts (1)

The a contraction theory is designed to obtain the stability of
discontinuous patterns Up for inviscid models.

Instead of considering solutions U® to the inviscid model for a fixed initial
perturbation U2, we consider inviscid limits U° with double limit v goes
to 0, and u¥ goes to UC.

_/u%_,_\e\id:v\oe ] /uq ‘.g\im?/ \A.}/,O

=" <

Sz -

Y

The method uses some viscous regularity effects, even if the perturbation
is not evanescent! At first glance it is a suspicous. How regularization
effects at v fixed can control the stability of the inviscid limit pattern?



Relation with the a-contraction theory with shifts (2)

The main idea is the following:

(1) The stability at the inviscid level is driven by shifts in properly
weighted norms (function a), up to a priori strong trace properties on the
solutions (which are usually not known).

(2) The strong trace property issue is solved when considering viscous
limits. But, because Up is discontinuous, the viscosity introduces new
destabilizing effects.

(3) These destabilizing effects are controlled via rescalable regularization
properties at the level of Navier-Stokes.

This strategy has been successfully applied to:
» 1D shocks for the Shallow water equation. [Kang-V., Inventiones 2021]

» 3D contact discontinuities without shear for the 3D compressible Full
Euler equation. [Kang-V.-Wang, CMP 2021]

» and now, to the incompressible shear flow at the boundary. [V.-Yang,
arXiv 2021]



Relation with the a-contraction theory with shifts (3)
The case of the Incompressible shear flow (incompressible Euler):
d v 2 i v i v
o~ Aerll = < s 2Adt/9u1 d dz

< 2A/(div(u”u1”)—|—(91P) dx = Iim/ us (x, z)ui (x, z) dx.
19 z—0 99

Impermeability condition is u3 = 0 on 9€2. Therefore, if we have strong
traces, the shear is stable:

d 2

—||u” — Ae < 0.

dt || 1||L2 >~

This corresponds to a trivial a-contraction at the inviscid level: a =1,
and no shift. Only the viscous destabilization has to be controlled:

A/ vws dx dt.
(0, T)x0%Q



Thank you

Thank You !



