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1 Introduction
Solidification is a key part of many industrial processes, and a better understanding of this
phenomenon is necessary to improve material production methods. Silicon production is
no exception and the casting process has a huge impact on the mechanical and chemical
properties of the final product.

Even though silicon is the second most common element in the Earth’s crust (only after
oxygen), it is rarely found in its pure form. Therefore, a complex process is required to
transform quartz (silicon dioxide) into pure silicon, as depicted in Figure 1. Broadly, the
raw materials provide silicon dioxide (in form of quartz) and carbon (in form of coal,
charcoal and woodchips) so when the mixture is heated up in the furnace a reduction
reaction takes place. One of the products of the reaction is silicon in liquid form which
flows downwards and is tapped at the bottom of the furnace and, after some refining
processes, is left to solidify. Our work focuses on this part of the process.

Our main interest are casting techniques such as iron moulds, water-cooled copper plates
and granulation. As opposed to directional solidification, in these techniques the velocity
of the solidification front is not controlled, causing an uneven distribution of impurities
across the cast.

Figure 1 – Sketch of the silicon production process, reproduced from [1].

The goal of the project is to derive, analyse and solve mathematical models which allow us
to gain a better understanding of the solidification process for a binary alloy, with a special
interest in the metallurgical grade silicon application. These models will provide insight
to our industrial partner, Elkem, that can lead to a better understanding and improvement
of their casting process

2 Mathematical model
In order to describe the solidification process we pose a Stefan problem including the
transport of impurities both in the solid and liquid phase and the constitutional
supercooling they cause. Therefore, we refer to this model as the extended Stefan
problem. In the model we define two regions: the liquid phase and the solid phase,
which are separated by a sharp interface. The position of this interface evolves in time so
it is an additional unknown in our equations.

We model temperature and concentration of impurities, respectively in each subdomain,
while also keeping track of the time evolution of the interface. We impose conservation
of mass and energy in each phase and across the moving interface, and couple the phases
under an assumption of constitutional supercooling. The effects of constitutional
supercooling are reflected in phase diagrams which become rather complex when more
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than two components are considered. Therefore, we assume that all impurities constitute
a single phase, resulting in a binary phase problem between the pure material and the
impurities. We assume as well that the relation between the impurity concentration and
the temperature on both the liquidus and the solidus is linear. We also assume that the
solid and liquid are stationary so heat and mass transport are driven only by diffusion.

We impose boundary conditions at the outer boundary, which corresponds to the wall of
the mould or the surface of the granule. In particular, we prescribe a no-flux condition
for the concentration of impurities (as they cannot flow outside the cast through the
boundary), as well as a fixed uniform temperature. A more realistic approach could
be taken by using a heat exchange condition (as done in [2]). However, in the limit
where the heat exchange coefficient is large, this condition can be approximated by a
Dirichlet boundary condition. We assume that initially the entire domain is liquid, with
homogeneous temperature and concentration of impurities. A more detailed derivation
of the model can be found in [3].

3 Stability analysis
Both the classic and the extended Stefan problems admit self-similar solutions when they
are defined in semi-infinite or infinite one-dimensional domains. In these cases, we can
calculate closed-form expressions for the solutions and we find that the interface motion
is proportional to the square root of time. However, when we look at silicon casts we
observe two-dimensional structures (silicon grains) therefore the question of whether
these one-dimensional solutions are stable arises.

In order to determine the stability of these solutions, we introduce small perturbations
to the temperature and concentration fields, and also to the position of the interface.
Substituting into the governing equations and linearising, we can find the equations
governing the perturbations. We consider both a semi-infinite domain (finite solid domain
and semi-infinite liquid domain) and an infinite domain (both semi-infinite solid and
liquid domains). For both geometries we find that, regardless of the parameter choice,
there are always unstable perturbations (that is, perturbations that grow unboudedly in
time). This means that planar solutions will break down into two-dimensional structures
(which are not captured by the model) and therefore not observed in real life. The details
of these analysis can be found in [4].

4 Solidification of finite domains
Self-similar solutions, such as the ones studied in the previous section, cannot be found
when the solidification domain is finite. Therefore, we need to use asymptotic techniques
to find analytical approximation to the solutions. We take the limit of large Lewis number,
which means that heat diffuses much faster than impurities do. We also assume small
diffusivity of impurities in the solid, small initial temperature and concentration, small
constitutional supercooling and almost complete rejection of impurities from the solid
phase. All these assumptions are reasonable for the cast of metallurgical grade silicon.
We consider two different geometries (planar and spherical) and perform a matched
asymptotic expansion to obtain analytical expressions for the solutions for the whole
time domain. These two geometries are representative of different types of silicon cast:
solidification into iron moulds and water cooled copper plates (for planar geometry), and
water granulation (for spherical geometry). The details for the planar geometry can be
found in [3] and for the spherical geometry in [5].

Planar geometry
We first perform the asymptotic analysis for the planar geometry. We consider a finite
planar domain cooled from the boundary, and assuming symmetry in the problem we
only need to consider half of the domain. The asymptotic analysis reveals four different
time regimes, and a total of ten different spatio-temporal layers across them. We find
that the first two time regimes are physically relevant, while the last two are not physical.
We can determine analytical solutions in each layer and by matching the solutions across
layers we can describe the behaviour of the solidification process across the entire time
domain. In order to validate the asymptotic solutions, we implemented a finite volume
scheme in MATLAB to solve the full model numerically.
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Figure 2 – Comparison of the analytical and numerical solution of (a) the interface position
and (b) the concentration of impurities on the liquid side of the interface against time for
the planar geometry.

In Figure 2 we compare the analytical and numerical solutions for the position of the
interface and the concentration of impurities at the interface as functions of time, for a
parameter set relevant to solidification of metallurgical grade silicon. We find really good
agreement between analytical and numerical solutions, which validates the asymptotic
analysis.
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Figure 3 – (a) Image of the sample used for the experimental data (imaged provided by
Elkem). The experiment corresponds to a 14mm silicon cast over a water cooled copper
plate. The data is taken at a given central section of the cast which has been polished and
chemically treated in order to take the measurements. (b) Comparison of the asymptotic
solution and experimental data for the concentration in the solid phase. The experimental
data has been provided by Elkem. For the asymptotic solution we used parameter values
𝑐0 = 0.01, 𝜇𝑟 = 17, 𝜇𝑙 = 10, 𝛼 = 0.03, and 𝑧0 = 0.43.

In Figure 3(b), we compare the asymptotic solution and the experimental data, in which
we only observe the first two time regimes. The corresponding composite asymptotic
solution for the impurity concentration valid in both regimes (at leading order) is

𝑐𝑠 (𝑧) ≈
𝛼𝜇

𝛼𝜇 + 1 𝑐0

∞∑
𝑛=1

𝑛
(
𝑒−𝜇(𝑛+1)𝑛𝑧 + 𝑒−𝜇𝑛(𝑛−1)𝑧

)
, (1)

where 𝜇 = 2𝜆2Le, 𝑐0 is the initial concentration of impurities in the melt, 𝛼 is the
segregation coefficient, 𝜆 is a dimensionless parameter related to the cooling rate (see [3]
for details), and Le is the Lewis number, defined as the ratio between the thermal over
impurity diffusivity in the liquid phase. Thus, we find that the concentration profile
depends only on three parameters: 𝜇, 𝛼, and 𝑐0.

In the experimental data, we observe that the concentration profiles produced by the two
solidification fronts are not symmetric, and that they eventually meet at a point 𝑧0 of the
cast. To match this with asymptotic solutions, we assume each side of the plot can be
modelled by (1) combining 𝑐𝑠 (𝑧 − 𝑧0) and 𝑐𝑠 (𝑧0 − 𝑧), both with the same parameters 𝛼 and
𝑐0 (as these are given by the material properties). However, we assume the parameter 𝜇
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depends on the cooling rate which has different values at the left and the right of the cast
due to the different heat transfer mechanisms. However, we know that both fronts meet
at the same time, and at 𝑧 = 𝑧0, therefore we have the relation

𝜇𝑙 =

(
𝑧0

1 − 𝑧0

)2
𝜇𝑟 , (2)

where subscripts 𝑟 and 𝑙 denote the right and left side of the central cross section 𝑧 = 𝑧0.
We use reasonable parameter values for our problem to compare the asymptotic solution
(1) with the experimental data. Using the parameter values 𝑐0 = 0.01, 𝜇𝑟 = 17, 𝜇𝑙 = 10,
𝛼 = 0.03 and 𝑧0 = 0.43, we obtain the asymptotic solution shown in Figure 3(b). Given
the simplicity of our model, we treat these parameters as effective coefficients that can be
determined experimentally for a given physical set-up. The asymptotic solution captures
the rapid growth of the concentration near the region where the solidification fronts meet,
and the constant concentration outside of this region. The noise in the data is caused by
the bubbles and pores of the cast, as impurities tend to aggregate around them. In spite of
these complications, the asymptotic solutions show good qualitative agreement with the
experimental data.

Spherical geometry
We also perform a similar analysis for a sphericallly symmetric geometry cooled from the
outside. In this case, the large Lewis number (Le) limit is not enough and we need to take
the small Stefan number (St) limit (i.e. time scale of the motion of the interface is much
smaller than heat diffusion time scale). We can take the two limits independently as long as
Le−

2
3 ≪ St ≪ 1. The analysis distinguishes three regimes with eight layers overall for the

Lewis number analysis, and, within the first regime, three subregimes for the small Stefan
number analysis. As before, we solve each layer separately and then match the solutions.
We use a finite volume scheme in MATLAB to validate the asymptotic solutions.
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Figure 4 – Comparison of the analytical and numerical solution of (a) the interface position
and (b) the concentration of impurities on the liquid side of the interface against time for
the spherical geometry.

In Figure 4 we compare the analytical and numerical solutions for the spherical problems,
showing the position of the interface and the concentration of impurities at the interface as
functions of time. The parameter set chosen here is still relevant for silicon, but we chose
Le and St to make sure that Le−

2
3 ≪ St ≪ 1 holds. We observe good agreement, although

not as good as for the planar geometry, especially for the concentration of impurities.

From the asymptotic analysis, we have that the concentration profile in the particle as a
function of the radius, 𝑟, is described by

𝑐𝑠 (𝑟) =
𝑎

1 + 𝑏𝑟3 , where 𝑎 = 𝛼𝑚𝑙 and 𝑏 =
3𝑚𝑙𝜌

𝑐0𝑘StLe , (3)

therefore there are two dimensionless numbers that control the shape of the concentration
profiles. The parameter 𝑎 dictates what is the concentration at the centre of the granule
and it is determined by 𝛼 and 𝑚𝑙 , which depend on the material. The shape of the profile
is governed by 𝑏, which contains St and thus 𝑏 can be changed by varying the cooling
conditions.

We find that the values 𝑎 ≈ 0.03 and 𝑏 ≈ 8 give reasonable agreements between the
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Figure 5 – Comparison of asymptotic solutions and experimental data for the concentration
of impurities in a silicon granule for two distinct samples. Both experimental data and
images of the samples have been provided by Elkem. The analytical solution corresponds to
(3) with parameter values 𝑎 = 0.03 and 𝑏 = 8. Notice that 𝑟 = 0 in the model corresponds to
the centre of the horizontal axis in both plots.

experimental data and the asymptotic results as shown in Figure 5; no additional parameter
fitting was employed. Despite the noise in the measurements, we observe an increasing
trend in the concentration from the boundaries to the interior, and then a region of roughly
constant concentration at the centre of the domain, in agreement with the behaviour
predicted by (3).

5 Discussion
We have studied different aspects of the extended Stefan problem to model solidification
of binary alloys, with particular interest on metallurgical grade silicon. We first derived
the general model [3], from which we derived all the subsequent models could be used as
a basis to implement numerical algorithms to study the problem, as the model is derived
from basic physical principles. In addition, the model can be used as starting point to
derive other models that include more physical phenomena.

The stability analysis presented in [4] proves from a mathematical point of view that stable
planar solidification fronts are not possible unless the cooling of the system is controlled
and the velocity of the solidification front kept below a certain threshold, like in directional
solidification or the Czochralski process. Even though this was known from experimental
evidence, the mathematical analysis provides theoretical background and highlights the
role of the moving boundary as the trigger of the instability, which can potentially lead to
the development of new casting techniques.

The asymptotic solutions derived in [3] provide insight into the solidification of thin
layers of silicon which, due to their aspect ratio, can be modelled as one-dimensional
processes. The solutions show the leading phenomena at each stage of the process and the
impact of each parameter over the dynamics. This is important, as the high temperatures
prevent Elkem from obtaining this information experimentally. The model allows us to
understand which parameters play a role in the impurity distribution over the solid silicon,
namely, the concentration of impurities in the initial melt, the segregation coefficient, and
a parameter 𝜇 related to the cooling rate. The initial concentration acts only as a scaling of
the concentration profile and, as it can be easily measured, we suggest to fix its value using
the experimental measurements of the liquid used in the cast. The other two parameters
should be fit to experimental data. We observe that both parameters play a role on the
scaling of the concentration profile, but 𝜇 has an impact on the thickness of the layer where
the impurities build up as well. Therefore, our model suggests that varying the cooling
rate can be used as a way to control the thickness of those layers. Because these layers
appear to be correlated to the equiaxed layers, where the grains are smaller, one could use
our model for an empirical approximation to the columnar to equiaxed transition.

In a similar way, we have obtained asymptotic solutions to the solidification of a binary
alloy in a sphere in [5]. The analysis gives results which are significantly different to those
in a planar geometry, highlighting thus the importance of the geometry in the solidification
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process. These results can be used to describe the water granulation process as we found
reasonable agreement between the analytical solution for the concentration of impurities
in the cast and experimental data on silicon granules. The main difference between planar
and spherical geometry is that in the latter the rejection of impurities from the solid
phase causes an increase of the concentration of impurities at the interface, making the
supercooling effects appear earlier than in the planar domain. Even though we analysed
two very simple geometries, it provides insight about the qualitative differences one might
observe between thin casts and geometries in which all dimensions have approximately
the same size.

Kjetil Hildal, Senior Research Engineer at Elkem, stated: "The modelling work performed
by Ferran Brosa Planella on ’Modelling the solidification of binary alloys’ has been important
to Elkem‘s fundamental research in solidification of silicon. By combining lab-scale experiments
with mathematical modelling, Ferran have contributed to the overall understanding of parameter
sensitivity with respect to microstructure development during solidification of silicon. Elkem
is using this added insight for the long-term development of alternatives to the current casting
methodology. In these alternatives, the control of critical parameters relevant for the solidification
process will be improved significantly. The involvement in InfoMM gives Elkem valuable access
to competence in mathematical modelling, and the importance of academic-industrial partnerships
are crucial for Elkem in order to remain a leading global producer of ferro silicon alloys".
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