
MULTIVALUED DIR-MINIMIZING FUNCTIONS

General Prerequisites: Solid knowledge of functional analysis and Sobolev spaces. Acquaintance with varia-
tional methods in PDEs and some basic geometric measure theory is also recommended.

For Sobolev spaces: chapters 2 and 7 in the book by Gilbarg-Trudinger [2] should suffice. Alternatively, a
mastery in the material of the courses C4.3 (Functional Analytic Methods in PDEs) and/or C4.6 (Fixed Point
Methods for Nonlinear PDEs). For Geometric measure theory: familiarity with chpaters 6 and 7 in the book by
Krantz-Parks [3] would be helpful, although this material will most probably be reviewed according to necessity.

Course Lecture Information: 4h lectures + 4h reading groups.
Course Overview: The course will serve as an introduction to the theory of multivalued Dir-minimizing

functions, which can be viewed as harmonic functions which attain multiple values at each point. These objects
play a fundamental role in Almgren’s big regularity paper [1] is one of the most remarkable achievements in geometric
measure theory. The basic text on which the material of the course is based on is the memoir “Q-valued functions
revisited” [5] by De-Lellis-Spadaro, which drastically simplifies the original paper by Almgren. Other related works
are [4] and [6].

Course Synopsis: The space of unordered tuples. The notion of differentiability and the theory of metric
Sobolev in the context multi-valued functions. Multivalued maximum principle and Holder regularity. Estimates
on the Hausdorff dimension of the singular set of Dir-minimizing functions. If time permits: mass minimizing
currents and their link with Dir-minimizers. Additional topics (in the expense of some of the topics suggested
above) may be included according to how things evolve.

Aimed at: Postgraduate students interested in geometric measure theory and its link with elliptic PDEs.
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