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@ Seclf-organized systems
9 The Euler-type flocking system
© Global existence of weak solutions

@ Time-asymptotic flocking



Self-organized systems

Biology: flocking of birds, swarming of insects, fish schools,. . .
Traffic Dynamics: crowds, cosmology. ..

Social science: social networks, opinion formation, linguistics,. . .

from Google-Image



Emergent behavior

Models of self-organized systems describe the dynamics of objects:

Xi(t)EQCRd, i=1,....,.N, v;=2%;

Long-Time dynamics = | Time-Asymptotic Flocking
o alignment: limy ;o max; j [v; —vj| =0

¢ bounded diameter: SUpsso % —%;| <D D >0, Vi,j
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Long-Time dynamics = Time-Asymptotic Flocking
o alignment: limy o0 max; j [v; — vj| =0

¢ bounded diameter: SUp;sg |xi — %5/ <D D >0, Vi,j




Mathematical models

Particle: Cucker-Smale (2007)

X, =V
{vi =5 Zj'vﬂ K (xi,%5) (vj — vi)
K(x,y)=¢(x—y|) >0



Mathematical models
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Mathematical models

Particle: Cucker-Smale (2007)

{Xi =V;
Wi = 4 e K(xi, %)) (vj — vi)
K(x,y) = ¢(lx—y[) >0

Kinetic:

O f+vdy f+0, (fL[f]) =
Lif(z,v,t) = [[ K(z,2s) (ve — v) (24,04, 1) dridv,
e Hydrodynamic:

th—i-am (pV) =0
Oy (pv) + 0y (pv? + P) = s
O (pE) 4 0, (pvE + Pv 4 ¢) = 8@

S, 8@ . nonlocal source terms.



Mathematical models/2

[Ha—Tadmor (2008); Ha-Liu; Motsch—-Tadmor (2011); Karper—Mellet-Trivisa (2013,
2015); Ha—Kang—Kwon] [Carrillo—Fornasier—Toscani-Vecil; recent review: Shvydkoy]

Kinetic [KMT 2015]:
ot w- Vo f 4 div (fLL]) = %Awff + %divw(ff(w — )
o= [ [ Ko we - wdudy

Rd Rd

e Hydrodynamic limit € — 0+ of

_]w—vét,m)]2}7

pgi/fedw, pEVEi/fewdw

- = p, PV = pv as e — 0+

£ (bt ,w) = plt,) exp {



The Euler-type flocking system

0tp + Om(pv) =0
O(pv) + 0z (pv? + plp)) = pL[(p,v)]

Li(pv) (. D)(x) = /R K, a')pla 1) (v(a!, ) — v(a,1)) da’

4

o Pressure: p(p) = o”p, a > 0 const.



The Euler-type flocking system

8tp + 81(,0V) =0
at(PV) + 0y (PV2 +p(p)) = pL[(p, V)}

L{(p,v)(-,t)](x) = /RK(x,x')p(x',t) (v(a',t) —v(z,t)) do’

v

Pressure: p(p) = : o > 0 const.
The Cauchy Problem for meaningful initial data:

(p,m)(2,0) = (po(z),mo(x)) inR.

m:=pv momentum



Aim

For weak solutions
global in time existence +  time-asymptotic flocking J

Oip+ 0;m =10
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Aim

For weak solutions
global in time existence +  time-asymptotic flocking J

Oip+ 0;m =10
2
om + 0, (“‘7 T /) — [ KG@w') (pla 0l )~ p(o' ), 1) d’
R

Our assumptions
e All-to-all interaction: K (z,2') =1

e Initial data: (pg,mp) compact support m:= pv

with essinf pg > 0 on a bounded interval Iy = [ag, by]




PART I: Global in time existence
of entropy weak solutions



Global Existence and Structure

Theorem 1 (Amadori-Chr., 2021)

Assume K =1, (po,vo) € BV(R) and
essinfz, po > 0 (%)
po(z) =mo(x) =0 Vadly=[ao,bo.

Then:
The Cauchy problem admits an entropy weak solution with
concentration (p,m) on R x [0, +00) .

o There exist two locally Lipschitz curves a(t) < b(t), t > 0 and
a value pj, s > 0 s.t.:

(i) a(0) =ag, b(0)=bg; a(t) < b(t) for all t > 0;
(i)
{eSSian(t) p(at) > Pinf > 0,
(p,pv)(z,t) =0 Vo & I(t).

e Conservation of mass and momentum.




Structure (5)

(§)

2- z(x,{:): xe 1) {7203

Ty | ak) b |

(S)

Remarks: « The lower bound p;,; > 0 is independent of t.
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Structure (5)

. :
T alk) \ ]bze)

(&}

§° 32 Jue 70 §°

a, b x

Q- 2(7<,l7)1 xe I(t\} ﬁ?ok

Tie)= [ at) b |

(S)

Remarks: © Assume the ad-hoc "boundary” condition:

The vacuum region is connected with the non-vacuum one by a shock

Different from gas dynamics [Liu, Smoller, Yang, Serre, Huang, Pan, Wang]
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Structure (S)

al) bit)
: i > S\“Q_ 70/

= Z(x,b): xe I(t\} -b;ok
Ilt\:[a(ﬂ, b |

(S)
Main difficulties:
(i) large BV data

(ii) loss of strict hyperbolicity around vacuum
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Entropy Weak Solution with Concentration
+ K =const. =1 =

Op + Ox(pv) =
= ¢ Oi(pv) + Oy (p ) =-Mp(v(z,t)—7)
M = [z p(-,t)
with v = M; /M. Can further Reduce to v =0 = M, .
Op+ 0z(pv) =0,
A(pv) + 0y (pv* + 0”p) = —Mpv = —Mnm.

system of balance laws in (p,m)

{&‘ﬂ + 8:Em - 07

2
Om + 0, <(mp)—|— )——Mm.
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Entropy Weak Solution with Concentration/2

Definition

Op+ Oym = 0,
2 1
(9,:m+8x <(mp)+ > == —Mm. ( )

Let (p,m) such that

o the map t + (p,m)(-,t) € L. N BV is continuous in L}

loc loc?

° thm (p,m)(+,t) = (po,mo) in Llloc'

@ there exist two locally Lipschitz curves a(t) < b(t), t > 0 and
a value p;n,r > 0 s.t. ... we have the structure (S) described.
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Entropy Weak Solution with Concentration/2

Definition
O¢p + Opm = 0,
2 1
6tm+6m<(mp)—|— >::—Mm. ( )

e Then (p,m) is an entropy weak solution with concentration if:
[(a)] V¢ € C5° (R x (0,00)):

// {pps + m¢,} dxdt=0,
// {qut { ) ]qbz Mmqb} dxdt
—/0 [p(p(b(t)—, 1)) o (b(t), 1) — p(p(al(t)+, 1)) ¢(a(t), t)] di=0

[(b)] for every convex entropy 1 with entropy flux ¢, the following inequality

dn(p,m) + 0zq(p,m) < —1mMn

12



Entropy Weak Solution with Concentration/2

Definition
{atp + axm - 0,

atm+ax<(mp)2+ >::_Mm. (1)

Then (p,m) is an entropy weak solution with concentration if:
[(a)] V¢ € C5° (R x (0, 00)):

//Q {p¢ +md,} dadt=0,

//Q {m@ * { + (H;)Q} P — Mmsb} dadt

_ /O°° [P(p(b()—, £))b(b(t), 1) — p(p(a(t)+, 1) (alt), )] dt =0,

[(b)] for every convex entropy 1 with entropy flux ¢, the following inequality

dn(p,m) + 82q(p,m) < —nuMm
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The Riemann Problem around Vacuum

Riemann Data at x = by = O:

oo = {70 250

13



The Riemann Problem around Vacuum

Riemann Data at x = by = O:

et = {0 250

The Rankine-Hugoniot conditions are:

{U(,Oe— ) = peve — v

a(peve — pv) = pevs — 72 + p(pe) — p(p)
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Riemann Data at x = by = O:

et = {0 250
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PPe

5 v;:vuzw_\/(f“()—“ﬂf)“ o) e
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The Riemann Problem around Vacuum

Riemann Data at x = by = O:

et = {0 250

The Rankine-Hugoniot conditions are:
o(pe—p) = peve — ¥
o(peve = p7) = peviy — %% + plpe) — p(p)

For a 2-shock solution:

5 v;:vuzw_\/(f“()—“ﬂf)“ o) e

PPe

As )= 0k, v(p) ~ =YD oo m(p) = —\/ip(pr) > 0

(m()?

= —v2() +p(pe) =0 = - +plpe)) — 0
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The Riemann Problem around Vacuum

Riemann Data at x = by = O:

et = {0 250

The Rankine-Hugoniot conditions are:

a(pe—p) = peve — v
o(peve — pv) = pevi — p3° + plpe) — p(p)
For a 2-shock solution:

Sy v;:vuzw_\/(p()—p(pe»( )

0<p<pe,
PPe
As = 0+, v(p) = ~ YT —oo, m(p) = —/Pplpr) = 0
_ 2 _(m( )’
= — v () +plpe) =0 < +plpe) — 0

2
= 0Py = PeVy
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The Riemann Problem around Vacuum

Riemann Data at x = by = O:

et = {0 250

The Rankine-Hugoniot conditions are:
o(pe—p) = peve — ¥
o(peve = p7) = peviy — %% + plpe) — p(p)

For a 2-shock solution:

5 v;:vuzw_\/(f“()—“ﬂf)“ o) e

PPe
As p— 0+, v(p) ~ —7%(’)2)% —oo, m(p)~—+/pp(pe)— 0
= () +p(p) 0 = —Mw(pe) —0

=  opvy = pgvg = Rankine-Hugoniot v with o = vy

13



The Riemann Problem around Vacuum /2

Now the 2-shock (p,m) solution for p > 0 satisfies

/] {W * (”;2 +p<p>> %} ddt = 0

for all ¢ € C§°(R x (0, +00)).

14



The Riemann Problem around Vacuum /2

Now the 2-shock (p,m) solution for p > 0 satisfies

//{mm+<i?+MM>Q%(Mﬁ:0

for all ¢ € C§°(R x (0,+00)). As p — 0+, (p,m) — (p,m)

o (peme), @ <tvg
mewy_{@®’ x>t .

14



The Riemann Problem around Vacuum /2

Now the 2-shock (p,m) solution for p > 0 satisfies

/] {W * (”;2 +p<p>> %} ddt = 0

for all ¢ € C§°(R x (0,+00)). As p — 0+, (p,m) — (p,m)

=~ =\ (e L (péam£)7 T < tvy
(p7m)(LL’t) o { (070)7 x > tVf .

2 _ +00
/ /{ o dedt T p(py) (vt 1) dt

xz>oth P 0
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The Riemann Problem around Vacuum /2

Now the 2-shock (p,m) solution for p > 0 satisfies

// {m¢t+ (m—; +p(p)> %} dedt =0

for all ¢ € C§°(R x (0,+0)). As p — 0+, (p,m) — (p,m)

s [ (e, w <t
(p,m)(z, ) := { (0,0), @>tv .

2 _ +00
/ /{ o dedt T p(py) (vt 1) dt

x>ath P 0

—+o0 ﬁQ
[ {/m + PP do+ [ (f) b d — [BEED omat)} dt=0.
Jo R Jox < tvy P

14



The Riemann Problem around Vacuum /2

Now the 2-shock (p,m) solution for p > 0 satisfies

// {m¢t+ (m—; +p(p)> %} dedt =0

for all ¢ € C§°(R x (0,+0)). As p — 0+, (p,m) — (p,m)

s [ (e, w <t
(p,m)(z, ) := { (0,0), @>tv .

—+00

/. W o dzdt T ) [ o(vett) dt.

x>ath P 0

—+oo ﬁQ
/ {/a@t + p(P)be d + / (7) b dz — B0 é(wt,t)} dit=0.
Jo R Jox < tvy P

for M =0, NO source. Motivation: entropy weak solution with concentration

14



The Cauchy Problem: Conservation of mass + momentum

Let (p,m) be an entropy weak solution with concentration.
Define the total momentum m to be the distribution

(1) = m(,t) + 0y Po(t) — 0. Pa(t), ¢ 0.

15



The Cauchy Problem: Conservation of mass + momentum

Let (p,m) be an entropy weak solution with concentration.
Define the total momentum m to be the distribution

m(-,t) :==m(-,t) + 0y Po(t) — 0, Pa(t), t>0.
where

Pyt) = / M pp(b(s)— ) ds,  Palt) = / M=) pp(a(s) +,5)) ds

0

Conservation of mass and momentum:

o /p(x,t)dx:/ p(m,t)dw:/po(m)da:, Vit > 0;
R I(t) R

o <m(-t), 91 >= /I(t)m(as,t)dx—I—Pb(t)—Pa(t):/Rmo(:c)dx, Vt>0,

for any test function ¢1= ¢1(z) that is equal to 1 on I(¢).

15



Existence proof: STEP 1

+ K =const. =1
In conclusion:

For K(x,z') = 1, the nonlocal interaction term becomes local!

J

Op + Oym = 0,
8@—#&(%4— ):—Mm.

after translation to v = 0 = M.
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Existence proof: STEP 1

+ K =const. =1

In conclusion:
For K(x,z') = 1, the nonlocal interaction term becomes local! J
Op + Oym = 0,
Om + 8, (% + ) — —Mnm.

after translation to v = 0 = M.

Balance laws: global existence in BV if dissipative source

[Dafermos—Hsiao, Dafermos. . .; Colombo—Guerra].
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Existence proof: STEP 1

+ K =const. =1
In conclusion:

For K(x,z') = 1, the nonlocal interaction term becomes local!

J

Op + Oym = 0,
8@—#&(%4— ):—Mm.

after translation to v = 0 = M.

Balance laws: global existence in BV if dissipative source
[Dafermos—Hsiao, Dafermos. . .; Colombo—Guerra].
e Main difficulties:
(i) loss of strict hyperbolicity around vacuum
[Liu, Liu—Smoller, Liu—Yang, Serre, Huang—Pan, Huang—Marcati—Pan,
Huang—Pan-Wang]

(ii) large BV data

16



Existence proof: STEP 2

From Eulerian to Lagrangian variables

(z,t) = (y,7); y= [T pla t)dd’ € [0,M], 7=t
u=1/p, v(yt)=v(z,t).
o-u— Oyv =0,
U [yv -0 Je (0.M)
0rv + 0y(a®Ju) = —Mwv
a’() b (t)
a bo "y y=0 y=M >

Free boundaries Fixed boundaries

17



The problem in Lagrangian formulation

{m oot ye@M) @

Orv + 0y(a?/u) = —Mv

e Initial data:
(ug,v0) € BV(0,M), essinfigapyuo >0, fOM vo(y)dy =0

e Non-reflecting boundary conditions:

all state values are admissible at the boundaries y = 0, y = M}

18



The problem in Lagrangian formulation

{m oot ye@M) @

Orv + 0y(a?/u) = —Mv

e Initial data:
(ug,v0) € BV(0,M), essinfigapyuo >0, fOM vo(y)dy =0

e Non-reflecting boundary conditions:

all state values are admissible at the boundaries y = 0, y = M}

—  Existence, Cauchy problem: [Nishida (M = 0), Dafermos,
Luo—Natalini-Yang, Amadori—Guerra; Boundary value pb: Frid (1996), different bdy

condition]

—  Equivalence of weak solutions (Eulerian, Lagrangian): [Wagner
(1987) for data with infinite total mass]

18



STEP 3: Front-tracking approximate solutions (u”, v")

e interactions e time steps t" = nAt e standby fronts

19



STEP 3: Front-tracking approximate solutions (u”, v")

e interactions e time steps t" = nAt e standby fronts
Linear Functionals:

BeJ(t)

0<y1<y2<...<yN(t)<M
L(t) = Lm(t) + Loput(t) + LM@ut(t), Vt.

N(t)
= Y sl L= kel = 5TV in(u)(, 1)
j=1
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STEP 3: Front-tracking approximate solutions (u”, v")

e interactions e time steps t" = nAt e standby fronts
Linear Functionals:

BeJ(t)

0<y1<y2<...<yN(t)<M
L(t) = Lin(t) + Loput(t) + LM@ut(t), Vt.
e L;n(t), L(t) are non-increasing in time
® Lo.out(t), Larout(t) standby fronts at the bdy y =0, y = M.
e bounds on »” and v”

0< u;'/nf < uy(y’ ) usup? ’vy(ya
e finite number of interactions

N(t)
=3 el Lma):;reﬂ:;TV{ln<u><~,t>}.

< Co Yye (0,M),tv

19



STEP 4: A weighted functional

e However, the monotonicity of L;, is not sufficient to
capture the structure of the solution. More information on the
wave cancellation is needed.

20



STEP 4: A weighted functional

e  However, the monotonicity of L;, is not sufficient to
capture the structure of the solution. More information on the
wave cancellation is needed.

A weighted functional

N(@) N(?)
Let)y= > lgl+¢& D gl €=1.
j=1, ;>0 j=1, ;<0

Amadori-Guerra ('01); Amadori—Corli ('08); Amadori—Baiti—Corli-Dal Santo ('15)

Vertical Traces
Given y € (0, M) and t > 0,

Wr(t) = %TV {In(u"))(y,); (0,£)} .

20



STEP 5: Convergence in Lagrangian!

a subsequence of (u”,v") — (u,v) € L}, ((0, M) x [0, +00))

the map ¢ — (u,v)(-,t) € L'(0, M) is Lipschitz cts

0< uinf § u(y,t) S Usup » |U(y,t)| § C’0

Convergence of horizontal and vertical traces on each (0,7),
in particular

T T
/ vY(0+,s)ds — / v(0+, s) ds VT >0.
0 0
(u,v) is an entropy weak solution to

Oru — Oyv = 0,
Orv + Oy(a?/u) = —Mv

21



STEP 6: From Lagrangian to Eulerian

For each v € N, define the approximate boundaries:

t M
@) =a0+ [ 0(0+5)ds, a0+ [ o @ tdy.
0 0
a”(t) b (t)
t T
y=0 y=M ;y ag by "o
Lagrangian Eulerian

1"(t) = (a”(2),0"(1)) , Q¥ = {(2,); >0, z € I"(1)}
1

u? (x*(x,t),t)

n”(z,t) = p’v" x € I¥(t)

Set p”(z,1) := v(x,t) == 0" (x"(z,1),t) x € I¥(t)

22



STEP 6: From Lagrangian to Eulerian

For each v € N, define the approximate boundaries:

t M
@) =a0+ [ 0(0+5)ds, a0+ [ o @ tdy.
0 0
a”(t) b (t)
t T
y=0 y=M ;y ag by "o
Lagrangian Eulerian

1"(t) = (a”(2),0"(1)) , Q¥ = {(2,); >0, z € I"(1)}

Wz, t) = 0" (M (a,t),t) € IU(E)

22



STEP 7: Conclusion

As v — o0,
a”(-) —=a(),  b"()—0b()

uniformly on compact subsets of [0, 4+00).
Uniform bounds on approximate solutions:

TV{p"(,t)R}, TV {n’(- 1) R}

Define
uj (1) / ’
i (t) :a”(t)+/0 u” (y',t) dy j=1,...,N"(t)

the Rankine-Hugoniot conditions are approximately satisfied across

v

the piecewise linear curves z7(t)

23



Approximate total momentum

b¥ ()
V() = / w”(x,£) de + PY(t) — PY(t),
a¥ (t)

M
‘ V(t)| < e_Mt : eMAtu ' 7 + C(nu + Atz/)? t>0

for a suitable constant C' > 0, which is independent on ¢ and v.

24



Approximate total momentum

b¥ ()
V() = / w”(x,£) de + PY(t) — PY(t),
a¥ (t)

M
‘ V(t)| < e_Mt : eMAtu ' 7 + C(nu + Atz/)? t>0

for a suitable constant C' > 0, which is independent on ¢ and v.
(p,m") === (p,m) in L} (), and extend

loc
n(z, 1) = m(z,t) (z,t) €
’ 0 (z,t) € R x [0,400) \ Q.

24



Approximate total momentum
b (t)

Y(t) = /U(t) n”(z,t) dw + PY(t) — P/ (t),

M
|57 ()] <e_Mt-eMAt”-7—|—C(77U—|—AtZ,), t>0

for a suitable constant C' > 0, which is independent on ¢ and v.
(p”,m") L2 (p,m) in L} (), and extend
t ,t) € Q
I L CORCR -
0 (x,t) € R x [0,400) \ 2.

Conservatiyon of mass b(t)

M = oV (z,t) do =22 p(x,t)dx
av(t) a(t)
Conservation of momentum

v (f) L2, / n(z, ) dz ++Py(t) — Pa(t) = 0= My, O
)

24



PART II: Time-Asymptotic Flocking
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Asymptotic flocking as t — 400

Definition
e The support I(t) = (a(t),b(t)) remains bounded for all ¢:

sup {b(t) —a(t)} < oo (3)

0<t<o0

o The oscillation of the velocity

osc {v;I(t)} = sup |v(xy1,t) — v(ze,t)|
1, w2€I(t)
satisfies
lim osc {v;I(t)} =0 (4)
—00 )
Question:

Does time-asymptotic flocking occur for solutions as in Theorem 1?)

25



Remarks

About (3)

After Theorem 1, condition (3) is immediate:

ping (b(t) — a(t)) < / pla,t)de = M
% w0

therefore 0 < b(t) — a(t) < M/pins for all t > 0.

Vit>0

26



Remarks

About (3)

After Theorem 1, condition (3) is immediate:

ping (b(t) —a(t)) < / plz,t)yde =M  Vt>0
= 1(t)

therefore 0 < b(t) — a(t) < M/pins for all t > 0.

About (4)

Condition (4) is equivalent to

sup |v(z,t) —v| — 0 t— 0.
xel(t)

Time-asympt. flocking = the flock will approach the same
velocity ¥

26



Remarks

Special solutions

If the initial data are: po(z) =p >0, vo(x)=7v, € [ag,bo

with p, ¥ constant values, then from Th. 1
plx,t) = p, v(z,t) =v, z€I(t)=[ag+ Vi, by + Vt],
Py(t) = Py(t) = p(p)M " (1 — =M1

m = pv+p(P)M " (1= M) (Opry = daqr))

= time-asymptotic flocking for every p > 0, v € R

t>0

4
: 5 s
E=0 } 5* f'?/“’

o o I %

Q. (%) olx,t)

27



Long-time behavior

Theorem 2 (Amadori-Chr., 2021)

Let (po,mp) € BV(R) and
q =TV {ln(po); Lo} + 5= TV {vo; [} > 0. Assume that

e?'M? < amax {po(ao+), po(bo—)}

Let (p,m) be the corresponding entropy weak solution obtained in
Theorem 1.

28



Long-time behavior

Theorem 2 (Amadori-Chr., 2021)

Let (po,mp) € BV (R) and
q =TV {ln(po); Lo} + 5= TV {vo; [} > 0. Assume that

e2IM? < amax {po(ag+), po(bo—)}

Let (p,m) be the corresponding entropy weak solution obtained in
Theorem 1.

The solution (p,m) admits time-asymptotic flocking, with an
exponentially fast decay:

osc{viI(t)} < Che 1t Vi>tg

for some ¢y > 0 C7, C5 > 0.




About the proof

Two main ingredients, the first:

[1] A geometric decay depending on the generation order

(# of wave reflections)
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k > 1 - generation order

Fy(t)

>

e>0, ge=

k

e+ >

e<0, ge=

|€! :
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k > 1 - generation order

Fe)= > [el+¢ > |ar, Fi(t) = > Fy(t)

>0, ge=k £<0, ge= Jjzk

e A functional that assigns a geometric weight £* to waves with
gen. order k and that , except at time steps.

V(t)=> ¢m.(t) NEW

k>1

V(t) < (1 + (522_ 1)MAt>nV(O+) :

while t € [t",t"1) and ¢ € [1,¢(q) ).
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The second main ingredient:
[2]  Maximum time length for each generation order J

27
8QM‘ sdet 2 2

t 3@/«.9’&1@» 21

T g

N >y
O sLoPe oF M

THE SloweR WAvE

There exists a time T™* > 0 such that J

waves of generation order k exist up to time k1™
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Combining [1] + [2]:
Using that £ > 1, we have the relation

Alt) < g L R0 < gV, v

Jjzk
Prove for some & > 1,

lim F1(t) =0, since MT* <1

t—o00

Lin(t) < Fy(t) < CheCitq

== Time-asymptotic flocking

32



Conclusion and Perspectives

Done: for K (z,z") = 1 (all-to-all interaction),
- for BV initial data with structure;

- Under a sufficient condition on the data,
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Conclusion and Perspectives

Done: for K (z,2') = 1 (all-to-all interaction),
- for BV initial data with structure;

- Under a sufficient condition on the data,

Current work: Unconditional flocking for K = 17 that is, does
it hold for ?

Possibly YES: For Cucker-Smale particle model

K(z,2')=¢(Jz —2'|) >0  with ¢ non-increasing,
[ee]
JTé=00

= time-asymptotic flocking for any initial data.
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Conclusion and Perspectives

Done: for K (z,2') = 1 (all-to-all interaction),
- for BV initial data with structure;

- Under a sufficient condition on the data,

Current work: Unconditional flocking for K = 17 that is, does
it hold for ?

Possibly YES: For Cucker-Smale particle model

K(z,2')=¢(Jz —2'|) >0  with ¢ non-increasing,
[ee]
JTé=00
= time-asymptotic flocking for any initial data.

e Future work... Extend the analysis to more general kernels K.
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THANK YOQU!
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