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Smooth Gaussian fields

▶ A C k -smooth Gaussian field is a Gaussian process indexed by
Rd which has C k -smooth sample paths. [Fields are centered
throughout this talk]

▶ Kolmogorov theorem: Suppose that K : Rd × Rd → R is a
positive definite symmetric function of class C k,k(V × V )
and, in addition, that

N := max
|α|,|β|≤k

sup
x ,y∈V

|∂α
x ∂

β
y K (x , y)| < ∞.

Then there exists a (unique up to an equivalence of
distribution) C k−1 Gaussian function f on V with the
covariance kernel K . Moreover, E||f ||C k−1 ≤ C

√
N.



Stationary fields

▶ Call a Gaussian field on Rd stationary or translation invariant
if its covariance kernel K (x , y) depends only on x − y , say
K (x , y) = k(x − y).

▶ Bochner theorem: For a continuous k, k is a Fourier
transform of a finite symmetric (ρ(A) = ρ(−A)) positive Borel
measure ρ on Rd , i.e.

k(x) =

∫
Rd

e2πi(λ·x)dρ(λ).

▶ Call ρ the spectral measure of the field.

▶ The field is a fourier transform of white noise on ρ, i.e.

f (x) = Wρ(e
2πix ·t)

The properties of f ,K , ρ are closely related.



Examples: Random plane waves

▶ Spectral measure is (normalised) arc length measure on
S1 ⊂ R2. So covariance kernel is J0(|x − y |), where J0 is
zeroth Bessel function. Here the covariance function oscillates
around zero, and decays like |x − y |−1/2

▶ Sample paths are eigenfunctions of Laplacian on R2 with
eigenvalue 1.

▶ Local scaling limit of a number of other Gaussian fields. E.g.
Random spherical harmonics [Wig22].



Picture

Figure: RPW landscape, around 2000 wavelengths across. Picture: Alex
Barnett



Examples: Bargmann-Fock field

▶ Covariance kernel is K (x , y) = e−|x−y |2/2. Hence the spectral
measure has Gaussian-type density.

▶ The field can be written as

f (x) = e−|x |2/2
∑

n,m≥0

an,m√
n!m!

xn1 x
m
2

▶ Thought of as a limit of Gaussian ensemble of homogeneous
polynomials. So zero sets are “portrait of ‘typical’ algebraic
variety”.

▶ Many percolation theoretic properties are easier to establish in
this model because the correlation decay is very fast.



Pictures

Figure: (Left) Bargman-Fock field sample. (Right) Gaussian ensemble of
homogeneous polynomials of degree 300. The scale is d−1/2 where d is
the degree. Picture: Dmitry Beliaev



Questions

We’re interested in large scale geometry of level/excursion sets
{f = l} or {f ≥ l} and the landscape of the field f . Quantities
that we’re interested in:

1. Local
▶ Volume of level sets
▶ Critical point structure of the field

2. Non-local
▶ Number of components of level sets
▶ Percolation theoretic probabilities (like box crossing)



Volume of zero sets

▶ Estimate of difference (in mean) of volume of zero sets of
closely coupled stationary Gaussian fields [BH23].

▶ Proof via mean curvature estimate ( ‘first variation of area’
formula).

▶ Main focus of Transfer of Status viva. Published in Elec.
Comm. Probab. in 2023.

▶ Using same idea, Peccati-Stecconi [PS24] studied Malliavin
derivative of nodal volume and absolute continuity w.r.t
Lebesgue measure.

▶ Ongoing work with Stecconi for higher moment analogues
(technically very challenging).



Critical points of fields

▶ Critical points structure important in topology of level sets
(think Morse theory).

▶ What is the distribution of total number of critical points of a
smooth Gaussian field?

▶ Expectation, variance by Kac-Rice formula [BCW19].



Point process comparison

Figure: (Left) Random Plane Waves (RPW) critical points. (Centre)
Poisson point process. (Right) Ginibre ensemble Picture: Beliaev,
Cammarota, Wigman

▶ All point processes above scaled to have same intensity.

▶ Variance asymptotics in R × R box for R → ∞: R2 logR
(RPW), R2 (Poisson), R (Ginibre) [CW17].



Small scale

Figure: At small scale, extrema of RPW repel each other. Probability of 2
points existing in a ball of radius r asymptotically r6, compared to r4 for
Poisson, as r → 0 [BCW19].



High local maxima

Let f : Rd → R, d ≥ 2 be a C 2+-smooth stationary Gaussian field.
Further assume that,

1. Var(f (x)) = 1 for all x .

2. Decay of correlation: E[f (0)f (x)] = o(1/ log ∥x∥) as x → ∞.

3. Non degeneracy: the vector (f (0),∇f (0)) has density in
Rd+1.

Consider a monotone function u : [0,∞) → [0,∞) such that
u(R) → ∞ as R → ∞. In a box [0,R]d , we consider the point
process of local maxima of the field f above level u(R).



Main result

Let fR denote a rescaling of the field f . For a Borel set B ⊂ Rd ,
define

ΦR(B) = number of local maxima above level u(R) of fR in B.

Rescaling is done so that intensity measure of ΦR is lebesgue
measure on Rd for all R.

Theorem (Belyaev-H. 2024)

Let Φ be a Poisson point process on Rd with lebesgue measure as
intensity measure. With assumptions and notations as above, we
have

ΦR → Φ weakly as R → ∞.



Comments

“Extremal sets of weakly correlated or Markovian Gaussian
processes are independent in the limit”

1. Both Bargmann-Fock field and RPW models satisfy the
assumptions of the theorem.

2. This is the first time arbitrary level going to infinity
considered. Previously for Gaussian processes, only levels
comparable to

√
logR in box [0,R]d considered. Number of

upcrossing in d = 1 [LLR83], exit points of excursion sets
[Pit96] etc.

3. For DGFF, [ST20] considered TV distance between high
points of the field and indep Bernoulli process on lattice (for
levels ≃ c

√
logR).

4. Thm implies, no filament structure for RPW at high levels.



Proof sketch

▶ Using Kallenberg theorem [Kal17, Thm 4.18], for simple point
processes, enough to show for boxes B

lim
R→∞

P(ΦR(B) = 0) = P(Φ(B) = 0)

and

lim sup
R→∞

E[Φ(B)] ≤ E[Φ(B)].

▶ Then approximate with excursion probabilities,

P(ΦR(B) = 0) ≃ P
(

max
x∈R·B

fR(x) > u(R)

)



Current/ future work

(Not written in Confirmation report!) We are able to give upper
bound on rate of convergence also.

Theorem (Belyaev-H. 2024)

Fix a finite box D ⊂ Rd , let ΦD
R denote restriction of ΦR to D.

Then, for large R

W1(Φ
D
R ,Pois(D)) ≤ u(R) max

∥x∥≥eu(R)2/2
|∇K (x)|

here K is the covariance kernel, W1 is Wasserstein 1-distance w.r.t
a metric on finite point measures on D.



Current/ future work

Proof using Palm distribution for point processes. Entirely different
from above previous theorem.

1. Consider similar problem when dimension d → ∞.
Applications in spin glass theory in stat mech, machine
learning.

2. Full scaling limit of critical point explaining filament structure
for RPW.
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