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Abstract

In this short note, we define partitions λ, µ ∈ P (n) to be equivalent if
the cross-diagonals of their Young diagrams have the same cardinalities, and
show that each equivalence class has a unique strict partition. Suppose ν, λ ∈
DP (n) and λ ∼ µ. We conjecture that if gνµ ̸= 0 then ν ⊵ λ, and that

gλµ ̸= 0, where gνµ = fµ+δ
νδ is Stembridge’s shifted Littlewood-Richardson

coefficient for δ = (l(µ), l(µ)− 1, ..., 1).

1 An Equivalence on Partitions

Let µ = (µ1, ..., µk) ∈ P (n). We assume throughout that partitions have decreasing
parts, i.e. µ1 ⩾ µ2 ⩾ ... ⩾ µk. It is well-known that partitions admit a Young
diagram.

Figure 1: The Young diagram of µ = (6, 4, 4, 2, 2)

We say that the dot in the ith row and jth column is the (i, j)th dot.

Let the k-th cross-diagonal of µ be the cross-diagonal of its Young diagram con-
taining only the (i, j)th dots where k = i+ j − 1.
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Figure 2: The Young diagram of µ = (3, 3, 3) with its cross-diagonals drawn.

Definition 1.1. For µ ∈ P (n), let c(µ) ∈ P (n) be the partition whose parts are
the number of dots in each cross-diagonal of µ. If necessary, we reorder the parts
of c(µ) so that they decrease.

Example 1.2. If µ = (3, 3, 3) then c(µ) = (3, 2, 2, 1, 1) since it has one cross-
diagonal of 3 dots, two with 2 dots, and two with 1 dot.

Definition 1.3. For λ, µ ∈ P (n) we write λ ∼ µ if c(λ) = c(µ).

It is clear that ∼ is an equivalence relation. Further details on this relation can also
be found in [NV25].

Example 1.4. We enumerate some equivalence classes.

n equivalence classes of P (n)

2 {(2), (1, 1)}

3 {(3), (13)}, {(2, 1)}

4 {(4), (14)}, {(3, 1), (2, 2), (2, 1, 1)}

5 {(5), (15)}, {(4, 1), (2, 13)}, {(3, 2), (3, 1, 1), (2, 2, 1)}

6 {(6), (16)}, {(5, 1), (2, 14)}, {(4, 2), (4, 1, 1), (3, 3), (3, 13), (23), (2, 2, 1, 1)}, {(3, 2, 1)}

Recall that a partition λ is strict if it has distinct parts, i.e. λi > λi+1 for all i.
DP (n) ⊆ P (n) denotes the strict partitions. Note that, in the examples above,
each equivalence class contains exactly one strict partition.

Lemma 1.5. c(µ)t is the unique strict partition equivalent to µ ∈ P (n).

Proof. c(µ)t is equivalent to c(µ), and hence µ, since the transpose preserves the
cross-diagonals.

Consider the shifted Young diagram of µ obtained by shifting the kth row by (k−1)
spaces to the right. This has the effect of straightening the cross-diagonals into lines.
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Then, shift the dots as far as possible up their columns.

Figure 3: The rows of µ = (3, 3, 3) are shifted, and dots have been moved up their
columns as far as possible.

By definition, counting the columns of this diagram gives c(µ), and so counting the
rows gives c(µ)t. The shifting of dots up their columns on c(µ) has the effect on µ
of shifting dots up their cross-diagonals. This clearly gives a strict partition, which
we see to be c(µ)t.

Suppose λ ∈ P (n) is strict. Then the dots in λ cannot be shifted up any further
along their cross-diagonals, so by the above λ = c(λ)t. So if λ ∼ µ then λ = c(λ)t =
c(µ)t, hence c(µ)t is the unique strict partition equivalent to µ.

Let λ = (λ1, ..., λk), µ = (µ1, ..., µk) ∈ P (n) (adding zero parts if necessary so that
they have the same length). Recall that λ dominates µ (λ ⊵ µ) if ∀1 ⩽ r ⩽ k

r∑
i=0

λi ⩾
r∑

i=0

µi

Lemma 1.6. If λ ∈ DP (n) is strict, then λ dominates its equivalence class.

Proof. Suppose µ ∈ P (n) is equivalent to λ. Recall that λ is obtained from µ by
shifting dots up as far as possible along cross-diagonals. Hence the first i rows of λ
contain at least as many dots as that of µ for all i ∈ N, hence λ ⊵ µ.

2 Conjectures on Shifted Littlewood-Richardson Coefficients

For ν ∈ DP (n) and µ ∈ P (n), we consider the coefficients gνµ defined by Stembridge
in Theorem 9.3 of [Ste89]. They are the coefficients in the decomposition of shifted
Schur Q-functions in the basis of Schur polynomials, but they may be described
purely in terms of shifted tableaux. They are a special case of the shifted Littlewood-
Richardson coefficients: gνµ = fµ+δ

νδ where δ = (l, l − 1, ..., 1) for l = l(µ).
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We recall Stembridge’s description. The coefficient gνµ is the number of tableaux
of content ν and shape µ satisfying the following rules:

1. Some entries of the tableaux are marked. For all k ∈ N

• each row has at most one marked k

• each column has at most one unmarked k

where a marked k is denoted k′.

2. With respect to the ordered alphabet 1′ < 1 < 2′ < 2 < ... the tableaux is
weakly increasing in rows and columns.

3. (Lattice Property) Recall that the word w1...wn of a tableaux is its sequence
of entries read from left to right, bottom row to top row. For i ⩾ 1 and
0 ⩽ j ⩽ 2n let

mi(j) =

{
multiplicity of i among wn−j+1...wn 0 ⩽ j ⩽ n

mi(n) + multiplicity of i′ among w1...wj−n n+ 1 ⩽ j ⩽ 2n

In other words, mi(j) is calculated by counting the unmarked i right to left,
then the marked i left to right, stopping at step j. If mi−1(j) = mi(j) then

wn−j ̸= i, i′ (0 ⩽ j < n)

wj−n+1 ̸= (i− 1), i′ (n ⩽ j < 2n)

4. For all i ∈ N, the leftmost i in the word is unmarked.

Figure 4: A Stembridge tableaux of content ν = (5, 4, 2, 1) and shape µ = (4, 4, 2, 2).
Its word is 342312′221′111.

More details are in for example [Ngu22], which also provides alternate models. Also
see [EP25] and references therein for recent work on the shifted LR coefficients.

We make two conjectures using the equivalence relation of the previous section.
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Conjecture 2.1. Let λ be the unique strict partition equivalent to µ ∈ P (n). Then

(i) ∀ν ∈ DP (n) if gνµ ̸= 0 then ν ⊵ λ

(ii) gλµ ̸= 0

I verified both by hand up to n = 9. I was able to prove (i) for l(ν) ⩽ 3 and (ii) for
l(λ) ⩽ 3 case-by-case, although the proof is long and a little messy.

For (i) it follows from the lattice property that gνµ ̸= 0 implies ν ⊵ µ, but I’m
seeking a sharper lower bound for ν.

Suppose µ ∼ µ
′
. It is not generally true that gνµ = gνµ′ although this does hold if

µ′ = µt (Proposition 3.7 of [Ngu22]).

My motivation is the appearance of these coefficients in Lemma 3.2 of [Ciu22],
where the equivalence relation appears in the type A cases of Propositions 4.4-4.6.
More generally, I would be interested in the (projective) representation-theoretic
meaning of the equivalence classes.

References

[Ciu22] Dan Ciubotaru. “Weyl groups, the Dirac inequality, and isolated unitary un-
ramified representations”. In: Indagationes Mathematicae 33.1 (2022), pp. 1–
23. issn: 0019-3577. doi: https://doi.org/10.1016/j.indag.2021.09.004.

[EP25] Santiago Estupinan-Salamanca and Oliver Pechenik. “Constructed tableaux
and a new shifted Littlewood-Richardson rule”. In: arXiv preprint (2025). url:
https://arxiv.org/abs/2503.14609.

[Ngu22] Duc-Khanh Nguyen. “On the shifted Littlewood-Richardson coefficients and
Littlewood-Richardson coefficients”. In: Annals of Combinatorics 26 (2022),
pp. 221–260. doi: https://doi.org/10.1007/s00026-022-00566-7.

[NV25] Michael Neubauer and Harmony Vargas. “Diagonal Sequences of Integer Parti-
tions”. In: Integers 25 (2025). url: https://math.colgate.edu/~integers/
z60/z60.pdf.

[Ste89] John R. Stembridge. “Shifted Tableaux and the Projective Representations of
Symmetric Groups”. In: Advances in Mathematics 74 (1989), pp. 87–134. doi:
https://doi.org/10.1016/0001-8708(89)90005-4.

5

https://doi.org/https://doi.org/10.1016/j.indag.2021.09.004
https://arxiv.org/abs/2503.14609
https://doi.org/https://doi.org/10.1007/s00026-022-00566-7
https://math.colgate.edu/~integers/z60/z60.pdf
https://math.colgate.edu/~integers/z60/z60.pdf
https://doi.org/https://doi.org/10.1016/0001-8708(89)90005-4

	An Equivalence on Partitions
	Conjectures on Shifted Littlewood-Richardson Coefficients

