

Conjectures on Stembridge's Shifted Littlewood-Richardson Coefficients

Will Osborne* December 10, 2025

Abstract

In this short note, we define partitions $\lambda, \mu \in P(n)$ to be equivalent if the cross-diagonals of their Young diagrams have the same cardinalities, and show that each equivalence class has a unique strict partition. Suppose $\nu, \lambda \in DP(n)$ and $\lambda \sim \mu$. We conjecture that if $g_{\nu\mu} \neq 0$ then $\nu \trianglerighteq \lambda$, and that $g_{\lambda\mu} \neq 0$, where $g_{\nu\mu} = f_{\nu\delta}^{\mu+\delta}$ is Stembridge's shifted Littlewood-Richardson coefficient for $\delta = (l(\mu), l(\mu) - 1, \dots, 1)$.

1 An Equivalence on Partitions

Let $\mu = (\mu_1, \dots, \mu_k) \in P(n)$. We assume throughout that partitions have decreasing parts, i.e. $\mu_1 \geq \mu_2 \geq \dots \geq \mu_k$. It is well-known that partitions admit a Young diagram.

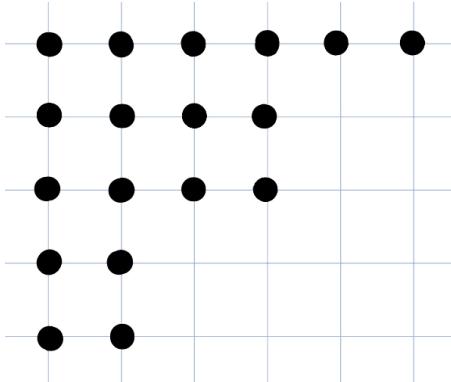


Figure 1: The Young diagram of $\mu = (6, 4, 4, 2, 2)$

We say that the dot in the i th row and j th column is the (i, j) th dot.

Let the k -th cross-diagonal of μ be the cross-diagonal of its Young diagram containing only the (i, j) th dots where $k = i + j - 1$.

*will.osborne@maths.ox.ac.uk Mathematical Institute, University of Oxford, UK

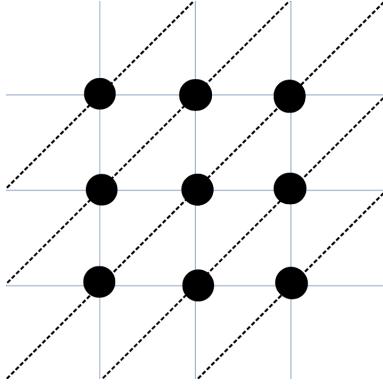


Figure 2: The Young diagram of $\mu = (3, 3, 3)$ with its cross-diagonals drawn.

Definition 1.1. For $\mu \in P(n)$, let $c(\mu) \in P(n)$ be the partition whose parts are the number of dots in each cross-diagonal of μ . If necessary, we reorder the parts of $c(\mu)$ so that they decrease.

Example 1.2. If $\mu = (3, 3, 3)$ then $c(\mu) = (3, 2, 2, 1, 1)$ since it has one cross-diagonal of 3 dots, two with 2 dots, and two with 1 dot.

Definition 1.3. For $\lambda, \mu \in P(n)$ we write $\lambda \sim \mu$ if $c(\lambda) = c(\mu)$.

It is clear that \sim is an equivalence relation. Further details on this relation can also be found in [NV25].

Example 1.4. We enumerate some equivalence classes.

n	equivalence classes of $P(n)$
2	$\{(2), (1, 1)\}$
3	$\{(3), (1^3)\}, \{(2, 1)\}$
4	$\{(4), (1^4)\}, \{(3, 1), (2, 2), (2, 1, 1)\}$
5	$\{(5), (1^5)\}, \{(4, 1), (2, 1^3)\}, \{(3, 2), (3, 1, 1), (2, 2, 1)\}$
6	$\{(6), (1^6)\}, \{(5, 1), (2, 1^4)\}, \{(4, 2), (4, 1, 1), (3, 3), (3, 1^3), (2^3), (2, 2, 1, 1)\}, \{(3, 2, 1)\}$

Recall that a partition λ is *strict* if it has distinct parts, i.e. $\lambda_i > \lambda_{i+1}$ for all i . $DP(n) \subseteq P(n)$ denotes the strict partitions. Note that, in the examples above, each equivalence class contains exactly one strict partition.

Lemma 1.5. $c(\mu)^t$ is the unique strict partition equivalent to $\mu \in P(n)$.

Proof. $c(\mu)^t$ is equivalent to $c(\mu)$, and hence μ , since the transpose preserves the cross-diagonals.

Consider the *shifted* Young diagram of μ obtained by shifting the k th row by $(k-1)$ spaces to the right. This has the effect of straightening the cross-diagonals into lines.

Then, shift the dots as far as possible up their columns.



Figure 3: The rows of $\mu = (3, 3, 3)$ are shifted, and dots have been moved up their columns as far as possible.

By definition, counting the columns of this diagram gives $c(\mu)$, and so counting the rows gives $c(\mu)^t$. The shifting of dots up their columns on $c(\mu)$ has the effect of shifting dots up their cross-diagonals. This clearly gives a strict partition, which we see to be $c(\mu)^t$.

Suppose $\lambda \in P(n)$ is strict. Then the dots in λ cannot be shifted up any further along their cross-diagonals, so by the above $\lambda = c(\lambda)^t$. So if $\lambda \sim \mu$ then $\lambda = c(\lambda)^t = c(\mu)^t$, hence $c(\mu)^t$ is the unique strict partition equivalent to μ . \square

Let $\lambda = (\lambda_1, \dots, \lambda_k)$, $\mu = (\mu_1, \dots, \mu_k) \in P(n)$ (adding zero parts if necessary so that they have the same length). Recall that λ *dominates* μ ($\lambda \trianglerighteq \mu$) if $\forall 1 \leq r \leq k$

$$\sum_{i=0}^r \lambda_i \geq \sum_{i=0}^r \mu_i$$

Lemma 1.6. *If $\lambda \in DP(n)$ is strict, then λ dominates its equivalence class.*

Proof. Suppose $\mu \in P(n)$ is equivalent to λ . Recall that λ is obtained from μ by shifting dots up as far as possible along cross-diagonals. Hence the first i rows of λ contain at least as many dots as that of μ for all $i \in \mathbb{N}$, hence $\lambda \trianglerighteq \mu$. \square

2 Conjectures on Shifted Littlewood-Richardson Coefficients

For $\nu \in DP(n)$ and $\mu \in P(n)$, we consider the coefficients $g_{\nu\mu}$ defined by Stembridge in Theorem 9.3 of [Ste89]. They are the coefficients in the decomposition of shifted Schur Q -functions in the basis of Schur polynomials, but they may be described purely in terms of shifted tableaux. They are a special case of the shifted Littlewood-Richardson coefficients: $g_{\nu\mu} = f_{\nu\delta}^{\mu+\delta}$ where $\delta = (l, l-1, \dots, 1)$ for $l = l(\mu)$.

We recall Stembridge's description. The coefficient $g_{\nu\mu}$ is the number of tableaux of content ν and shape μ satisfying the following rules:

1. Some entries of the tableaux are marked. For all $k \in \mathbb{N}$
 - each row has at most one marked k
 - each column has at most one unmarked k

where a marked k is denoted k' .
2. With respect to the ordered alphabet $1' < 1 < 2' < 2 < \dots$ the tableaux is weakly increasing in rows and columns.
3. (Lattice Property) Recall that the word $w_1 \dots w_n$ of a tableaux is its sequence of entries read from left to right, bottom row to top row. For $i \geq 1$ and $0 \leq j \leq 2n$ let

$$m_i(j) = \begin{cases} \text{multiplicity of } i \text{ among } w_{n-j+1} \dots w_n & 0 \leq j \leq n \\ m_i(n) + \text{multiplicity of } i' \text{ among } w_1 \dots w_{j-n} & n+1 \leq j \leq 2n \end{cases}$$

In other words, $m_i(j)$ is calculated by counting the unmarked i right to left, then the marked i left to right, stopping at step j . If $m_{i-1}(j) = m_i(j)$ then

$$\begin{aligned} w_{n-j} &\neq i, i' & (0 \leq j < n) \\ w_{j-n+1} &\neq (i-1), i' & (n \leq j < 2n) \end{aligned}$$

4. For all $i \in \mathbb{N}$, the leftmost i in the word is unmarked.

1'	1	1	1
1	2'	2	2
2	3		
3	4		

Figure 4: A Stembridge tableaux of content $\nu = (5, 4, 2, 1)$ and shape $\mu = (4, 4, 2, 2)$. Its word is 342312'221'111.

More details are in for example [Ngu22], which also provides alternate models. Also see [EP25] and references therein for recent work on the shifted LR coefficients.

We make two conjectures using the equivalence relation of the previous section.

Conjecture 2.1. *Let λ be the unique strict partition equivalent to $\mu \in P(n)$. Then*

- (i) $\forall \nu \in DP(n)$ if $g_{\nu\mu} \neq 0$ then $\nu \triangleright \lambda$
- (ii) $g_{\lambda\mu} \neq 0$

I verified both by hand up to $n = 9$. I was able to prove (i) for $l(\nu) \leq 3$ and (ii) for $l(\lambda) \leq 3$ case-by-case, although the proof is long and a little messy.

For (i) it follows from the lattice property that $g_{\nu\mu} \neq 0$ implies $\nu \trianglerighteq \mu$, but I'm seeking a sharper lower bound for ν .

Suppose $\mu \sim \mu'$. It is not generally true that $g_{\nu\mu} = g_{\nu\mu'}$ although this does hold if $\mu' = \mu^t$ (Proposition 3.7 of [Ngu22]).

My motivation is the appearance of these coefficients in Lemma 3.2 of [Ciu22], where the equivalence relation appears in the type A cases of Propositions 4.4-4.6. More generally, I would be interested in the (projective) representation-theoretic meaning of the equivalence classes.

References

- [Ciu22] Dan Ciubotaru. “Weyl groups, the Dirac inequality, and isolated unitary unramified representations”. In: *Indagationes Mathematicae* 33.1 (2022), pp. 1–23. ISSN: 0019-3577. DOI: <https://doi.org/10.1016/j.indag.2021.09.004>.
- [EP25] Santiago Estupinan-Salamanca and Oliver Pechenik. “Constructed tableaux and a new shifted Littlewood-Richardson rule”. In: *arXiv preprint* (2025). URL: <https://arxiv.org/abs/2503.14609>.
- [Ngu22] Duc-Khanh Nguyen. “On the shifted Littlewood-Richardson coefficients and Littlewood-Richardson coefficients”. In: *Annals of Combinatorics* 26 (2022), pp. 221–260. DOI: <https://doi.org/10.1007/s00026-022-00566-7>.
- [NV25] Michael Neubauer and Harmony Vargas. “Diagonal Sequences of Integer Partitions”. In: *Integers* 25 (2025). URL: <https://math.colgate.edu/~integers/z60/z60.pdf>.
- [Ste89] John R. Stembridge. “Shifted Tableaux and the Projective Representations of Symmetric Groups”. In: *Advances in Mathematics* 74 (1989), pp. 87–134. DOI: [https://doi.org/10.1016/0001-8708\(89\)90005-4](https://doi.org/10.1016/0001-8708(89)90005-4).