
Examiners’ Report: Final Honour School of Mathematics Part

B Trinity Term 2023

October 27, 2023

Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1.

Numbers Percentages %
2023 (2022) (2021) (2020) (2019) 2023 (2022) (2021) (2020) (2019)

I 54 (55) (51) (73) (59) 36.24 (41.04) (39.84) (46.5) (39.07)
II.1 72 (53) (58) (66) (67) 48.32 (39.55) (45.31) (42.04) (44.37)
II.2 18 (24) (18) (13) (20) 12.08 (17.91) (14.06) (8.28) (13.25)
III 4 (2) (1) (4) (4) 2.68 (1.49) (0.78) (2.55) (2.65)
P 1 (0) (1) (0) (0) 0.67 (0) (0.64) (0) (0)
F 0 (0) (0) (1) (0) 0 (0) (0.66) (0) (0)

Total 149 (134) (157) (151) (152) 100 (100) (100) (100) (100)

Table 1: Numbers and percentages in each class

• Numbers of vivas and effects of vivas on classes of result.

As in previous years there were no vivas conducted for the FHS of Mathematics Part
B.
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• Marking of scripts.

BEE Extended Essays, BSP Mathematical Modelling and Numerical Computation
Structured Projects and coursework submitted for the History of Mathematics course
were double marked.

The remaining scripts were all single marked according to a preagreed marking scheme
which was strictly adhered to. For details of the extensive checking process, see Part
II, Section A.

For information on steps taken in response to the Marking and Assessments Boycott
(MAB) please see Part I, Section B.

• Numbers taking each paper.

See Table 5 on page 9.

B. Strike Action

The marking of Part B examinations was not affected by the marking and assessment boy-
cott (MAB). Replacement assessors were recruited for two BEE Extended Essay projects.
All replacement assessors were experienced markers with a suitable level of expertise in the
subject matter.

C. Changes in examining methods and procedures currently under discus-
sion or contemplated for the future

None.

D. Notice of examination conventions for candidates

The Notice to Candidates Offering Coursework was issued on the 3 March 2023. The first
Notice to Candidates was issued on 15 March 2023 and the second notice on 28 April 2023.

All notices and the examination conventions for 2023 are online at
http://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments.

Part II

A. General Comments on the Examination

The examiners would like to record their heartfelt thanks to all those who helped in the
preparation, administering, and assessing of this year’s examinations. The chair would like
to thank Haleigh Bellamy, Clare Sheppard, Charlotte Turner-Smith, Waldemar Schlackow,
Matt Brechin and the rest of the academic administration team for their support of the
Part B examinations.
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In addition the internal examiners would like to express their gratitude to Professor John
Hunton and Professor Anne Skeldon for carrying out their duties as external examiners in
such a constructive and supportive way during the year and for their thoughtful contribu-
tions during the final examiners’ meetings.

The whole examination process went very smoothly this year. No paper required significant
rescaling, unlike in 2022.

Standard of performance

The standard of performance was broadly in line with recent years. In setting the USMs,
we took note of

• the Examiners’ Report on the 2022 Part B examination, and in particular recommen-
dations made by last year’s examiners, and the Examiners’ Report on the 2022 Part
A examination, in which the 2023 Part B cohort were awarded their USMs for Part
A;

• the guidelines provided by the Mathematics Teaching Committee, including its rec-
ommendations on the proportion of candidates that might be expected in each class.

Setting and checking of papers and marks processing

The internal examiners initially divided between them responsibility for the units of assess-
ment (that is, the exam papers and projects).

Following established practice, the questions for each paper were initially set by the course
lecturer, with the lecturer of a related course involved as checker before the first draft of
the questions was presented to the examiners. The course lecturers also acted as assessors,
marking the questions on their course(s).

Requests to course lecturers to act as assessors, and to act as checker of the questions of
fellow lecturers, were sent out early in Michaelmas Term, with instructions and guidance
on the setting and checking process, including a web link to the Examination Conventions.

The internal examiners met at the beginning of Hilary Term to consider those draft papers
on Michaelmas Term courses, and changes and corrections were agreed with the lecturers
where necessary. Where necessary, corrections and any proposed changes were agreed with
the setters. The revised draft papers were then sent to the external examiners. Feedback
from external examiners was given to examiners and to the relevant assessor for response.
The internal examiners at their meeting in mid Hilary Term considered the external ex-
aminers’ comments and the assessor responses, making further changes as necessary before
finalising the questions. The process was repeated for the Hilary Term courses, but neces-
sarily with a much tighter schedule. Before questions were submitted to the Examination
Schools, setters were required to sign off a camera-ready copy of their questions.

Exams were held in-person in the Exams Schools. Papers were collected by the Academic
Administration team and made available to assessors approximately half a day following
the examination. Assessors were made aware of the marking deadlines ahead of time and
all scripts and completed mark sheets were returned, if not by the agreed due dates, then
at least in time for the script-checking process.
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A team of graduate checkers, under the supervision of Haleigh Bellamy and Charlotte
Turner-Smith, sorted all the marked scripts for each paper of this examination, cross check-
ing against the mark scheme to spot any unmarked questions or parts of questions, addition
errors or incorrectly recorded marks. Also sub-totals for each part were checked against the
mark scheme, noting correct addition. In this way a number of errors were corrected,and
each change was signed by one of the examiners who were present throughout the process.

Throughout the examination process, candidates were treated anonymously, identified only
by a randomly-assigned candidate number.

Timetable

Examinations began on Monday 29 May and ended on Friday 16 June.

Consultation with assessors on written papers

Assessors were asked to submit suggested ranges for which raw marks should map to USMs
of 60 and 70 along with their mark-sheets, and almost all did so. In most cases these were
in line with the assignments given by the assessors.

Determination of University Standardised Marks

The Mathematics Teaching Committee issued each examination board with broad guidelines
on the proportion of candidates that might be expected in each class. This was based on
the average in each class over the last four years, together with recent historic data for Part
B.

We followed the Department’s established practice in determining the University standard-
ised marks (USMs) reported to candidates. Papers for which USMs are directly assigned
by the markers or provided by another board of examiners are excluded from consideration.
Calibration uses data on the Part A performances of candidates in Mathematics and Math-
ematics & Statistics (Mathematics & Computer Science and Mathematics & Philosophy
students are excluded at this stage). Working with the data for this population, numbers
N1, N2 and N3 are first computed for each paper: N1, N2 and N3 are, respectively, the
number of candidates taking the paper who achieved in Part A average USMs in the ranges
[69.5, 100], [59.5, 69.5) and [0, 59.5).

The algorithm converts raw marks to USMs for each paper separately. For each paper, the
algorithm sets up a map R → U (R = raw, U = USM) which is piecewise linear. The
graph of the map consists of four line segments: by default these join the points (100, 100),
P1 = (C1, 72), P2 = (C2, 57), P3 = (C3, 37), and (0, 0). The values of C1 and C2 are set by
the requirement that the number of I and II.1 candidates in Part A, as given by N1 and
N2, is the same as the I and II.1 number of USMs achieved on the paper. The value of
C3 is set by the requirement that P2P3 continued would intersect the U axis at U0 = 10.
Here the default choice of corners is given by U -values of 72, 57 and 37 to avoid distorting
nonlinearity at the class borderlines.

The results of the algorithm with the default settings of the parameters provide the starting
point for the determination of USMs, and the Examiners may then adjust them to take
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account of consultations with assessors (see above) and their own judgement. The examiners
have scope to make changes, either globally by changing certain parameters, or on individual
papers usually by adjusting the position of the corner points P1, P2, P3 by hand, so as to
alter the map raw→ USM, to remedy any perceived unfairness introduced by the algorithm.
They also have the option to introduce additional corners. For a well-set paper taken by a
large number of candidates, the algorithm yields a piecewise linear map which is fairly close
to linear, usually with somewhat steeper first and last segments. If the paper is too easy or
too difficult, or is taken by only a few candidates, then the algorithm can yield anomalous
results—very steep first or last sections, for instance, so that a small difference in raw
mark can lead to a relatively large difference in USMs. For papers with small numbers of
candidates, moderation may be carried out by hand rather than by applying the algorithm.

This year a preliminary meeting of the internal examiners was held in advance of the final
exam board meeting to compare the default settings produced by the algorithm alongside
the reports from assessors. It was agreed that only a selection of scaling maps would be
further reviewed at the final exam board, and that external examiners would be given
an opportunity to review all maps prior to the meeting. Adjustments were made to the
default settings as appropriate, paying particular attention to borderlines and to raw marks
which were either very high or very low. Where the examiners were in doubt as to the
most appropriate scaling, the preliminary scalings were held over to the final exam board
meeting, where the factors considered by those in the preliminary meeting were reviewed
and weighed before a final decision was made.

Table 2 on page 6 gives the final positions of the corners of the piecewise linear maps used
to determine USMs.

In accordance with the agreement between the Mathematics Department and the Computer
Science Department, the final USM maps were passed to the examiners in Mathematics &
Computer Science. USM marks for Mathematics papers of candidates in Mathematics &
Philosophy were calculated using the same final maps and passed to the examiners for that
School.

Comments on use of Part A marks to set scaling boundaries

None.

Mitigating Circumstance Notice to Examiners

A subset of the examiners (the ‘Mitigating Circumstances Panel’) attended a pre-board
meeting to band the seriousness of the individual notices to examiners. The outcome of this
meeting was relayed to the Examiners at the final exam board, who gave careful regard to
each case, scrutinised the relevant candidates’ marks and agreed actions as appropriate.

The full board of examiners considered all of the notices in the final meeting, along with
a number of MCEs carried over from Part A. The examiners considered each application
alongside the candidate’s marks and the recommendations proposed by the Part A 2022
Exam board.
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Table 2: Position of corners of the piecewise linear maps

Paper P1 P2 P3 Additional N1 N2 N3

Corners

B1.1 13.56,37 23.6,57 47,70 50,100 9 30 11
B1.2 13.5,37 23.5,57 46,72 50,100 10 28 11
B2.1 6.78,37 11.8,57 32.8,72 50,100 15 14 1
B2.2 6.43,37 11.2,57 35.2,72 50,100 16 12 2
B3.1 10.23,37 17.8,57 38.8,72 50,100 22 24 3
B3.2 13.44,37 23.4,57 41.4,72 50,102 10 11 4
B3.3 16.77,37 29.2,57 38.2,72 50,100 14 11 4
B3.4 9.31,37 16.2,57 40.2,72 50,100 18 24 3
B3.5 11.37,37 19.8,57 40.8,72 50,100 22 22 7
B4.1 10.91,37 19,57 34,72 50,100 29 25 8
B4.2 13.56,37 23.6,57 35.6,72 50,100 22 15 6
B4.3 15.8,37 20,50 35,72 50,100 8 3 3
B4.4 9.36,37 20,50 41,70 50,100 7 2 1
B5.1 16.49,37 28.7,57 45.2,72 50,100 5 17 7
B5.2 11.55,37 20,50 39.6,72 50,100 13 28 8
B5.3 11.32,37 19.7,57 36.2,72 50,100 6 15 3
B5.4 8.39,37 18,50 41.6,72 50,100 5 13 4
B5.5 10.63,37 18.5,57 41,72 50,100 6 25 10
B5.6 13.27,37 23.1,57 42.6,72 50,100 6 19 11
B6.1 13.33,37 23.2,57 42,70 50,100 7 10 1
B6.2 16.66,37 29,57 44,72 50,100 11 22 8
B6.3 16.26,37 28.3,57 41.8,72 50,100 4 3 5
B7.1 17.18,37 29.9,57 40.4,72 50,100 4 8 3
B7.2 8.16,37 14.2,57 23.2,72 50,100 7 10 5
B7.3 11.6,37 20.2,57 29.2,72 50,100 7 7 3
B8.1 6.38,37 11,50 30.6,72 50,100 28 28 9
B8.2 5.29,37 20,50 33.2,72 50,100 22 11 2
B8.3 13.5,37 23.5,57 46,72 50,100 17 30 14
B8.4 11.26,37 19,50 41,70 50,100 8 37 14
B8.5 12.18,37 21.2,57 45.2,72 50,100 12 16 6
BSP 2000,100 1 3 2
SB1 18.73,37 32.6,57 59.6,72 66,100 11 23 11
SB1 34,100 11 23 11
SB2.1 14.02,37 24.4,57 42.4,72 50,100 12 26 9
SB2.2 13.61,37 23.7,57 40.2,72 50,100 16 33 10
SB3.1 14.94,37 26,57 41,72 50,100 26 40 18
SB3.2 13.33,37 25,60 37,70 50,100 2 6 5
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B. Equality and Diversity issues and breakdown of the results by gender

Table 3: Breakdown of results by gender

Class Number

2023 2022 2021
Female Male Total Female Male Total Female Male Total

I 5 49 54 5 50 55 13 38 51
II.1 23 49 72 19 34 53 22 36 58
II.2 7 11 18 15 9 24 4 14 18
III 2 2 4 1 1 2 1 0 1
P 0 1 1 0 0 0 0 1 1
F 0 0 0 0 0 0 0 0 0

Total 37 112 149 40 93 134 40 89 129

Class Percentage

2023 2022 2021
Female Male Total Female Male Total Female Male Total

I 13.51 43.75 36.24 12.5 53.19 41.04 32.5 42.70 39.53
II.1 62.16 43.75 48.32 47.5 36.17 39.56 55 40.45 44.96
II.2 18.92 9.82 12.08 37.5 9.57 18.32 10 15.73 13.95
III 5.41 1.79 2.68 2.5 1.06 5.88 2.5 0 0.78
P 0 0.89 0.67 0 0 0 0 1.12 0.78
F 0 0 0 0 0 0 0 0 0

Total 100 100 100 100 100 100 100 100 100
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Table 4: Rank and percentage of candidates with this or greater overall USMs

Av USM Rank Candidates with %
this USM and above

94 1 1 0.67
88 2 2 1.34
84 3 3 2.01
83 4 4 2.68
82 5 5 3.36
81 6 9 6.04
80 10 13 8.72
79 14 16 10.74
78 17 20 13.42
77 21 22 14.77
76 23 26 17.45
75 27 30 20.13
74 31 35 23.49
73 36 39 26.17
72 40 45 30.2
71 46 49 32.89
70 50 54 36.24
69 55 61 40.94
68 62 69 46.31
67 70 77 51.68
66 78 85 57.05
65 86 94 63.09
64 95 103 69.13
63 104 111 74.5
62 112 116 77.85
61 117 123 82.55
60 124 126 84.56
59 127 130 87.25
57 131 131 87.92
56 132 137 91.95
55 138 140 93.96
53 141 142 95.3
52 143 143 95.97
51 144 144 96.64
44 145 145 97.32
42 146 146 97.99
41 147 147 98.66
40 148 148 99.33
33 149 149 100
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C. Detailed numbers on candidates’ performance in each part of the ex-
amination

The number of candidates taking each paper is shown in Table 5.

Table 5: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

B1.1 51 34.9 11.24 64.45 15.95
B1.2 51 32.69 10.89 61.88 14.59
B2.1 30 31.77 10.13 74.9 11.97
B2.2 30 30.5 9.42 71 10.57
B3.1 50 33.54 8.13 70.08 9.87
B3.2 25 36.48 7.54 70.6 11.04
B3.3 29 38.07 7.97 74.24 16.08
B3.4 44 33.5 7.17 68.82 6.43
B3.5 50 35.48 9.29 70.52 12.81
B4.1 60 31.42 8.78 71.17 12.09
B4.2 43 34 8.8 71.65 14.23
B4.3 14 33.43 7.5 70.57 11.95
B4.4 10 37.6 10.59 70.9 14.23
B5.1 24 33.12 11 58.5 15.29
B5.2 46 30.39 7.95 61.91 10.26
B5.3 25 30.12 7.21 66.12 9.5
B5.4 24 31.5 9.23 63.38 10.46
B5.5 35 27.06 8.64 60.77 11.57
B5.6 32 31.56 9.29 63.78 12.89
B6.1 21 39 9.35 73.19 14.64
B6.2 29 36.62 8.6 66.14 13.5
B6.3 9 36.44 7.23 68.33 11.16
B7.1 18 33.89 7.35 63.06 11.95
B7.2 25 19.64 6.32 64.28 12.46
B7.3 20 24.95 8.51 63.1 17.18
B8.1 55 26.13 8.58 66.93 11.65
B8.2 33 30.76 9.77 67.97 16.78
B8.3 42 35.86 11.34 65.17 17.88
B8.4 45 31.09 9.94 61.51 13.8
B8.5 30 34.33 10.11 65.47 13.77
SB1 12 35.58 12.28 67.83 4.37
SB2.1 18 33.89 9.86 63.94 12.53
SB2.2 24 33.96 7.5 65.79 11.27
SB3.1 57 34.11 8.78 65.51 13.68
BO1.1 9 - - 73.78 6.08
BO1.1X 9 - - 65.67 8.56
BEE 13 - - 78.54 7.74
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Individual question statistics for Mathematics candidates are shown below for those papers
offered by no fewer than six candidates.

Paper B1.1: Logic

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.56 20.56 5.06 48 0
Q2 12.32 12.32 6.12 34 0
Q3 19.68 19.68 6.29 19 0

Paper B1.2: Set Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.71 14.71 6.57 41 0
Q2 15.85 16.49 5.1 37 2
Q3 17.14 18.92 7.21 24 4

Paper B2.1: Introduction to Representation Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 9.56 9.56 4.02 16 0
Q2 16.53 16.53 6.15 17 0
Q3 19.22 19.22 4.29 27 0

Paper B2.2: Commutative Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.69 15.69 3.82 26 0
Q2 15.24 15.24 6.12 25 0
Q3 14 14 7.78 9 0

Paper B3.1: Galois Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.5 17.51 4.59 35 1
Q2 17.9 18.32 5.6 28 1
Q3 13.86 14.89 5.02 37 5

Paper B3.2: Geometry of Surfaces

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.32 18.76 4.98 21 1
Q2 20.46 20.46 3.67 13 0
Q3 15.47 15.75 4.58 16 1
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Paper B3.3: Algebraic Curves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.1 20.61 4.38 28 1
Q2 18.08 18.08 5.17 25 0
Q3 12.57 15 6.08 5 2

Paper B3.4: Algebraic Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.16 15.16 2.86 31 0
Q2 19.9 19.9 3.08 30 0
Q3 14.61 15.07 5.04 27 1

Paper B3.5: Topology and Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.72 17.72 5.24 29 0
Q2 19.05 19.53 5.41 40 1
Q3 14.62 15.45 6.32 31 3

Paper B4.1: Functional Analysis I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15 15.18 4.37 56 1
Q2 13.84 15.05 5.72 37 6
Q3 17.18 17.7 6.28 27 1

Paper B4.2: Functional Analysis II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.22 17.36 6.27 25 2
Q2 17.3 17.81 6.02 26 1
Q3 16.14 16.14 4.96 35 0

Paper B4.3: Distribution Theory and Fourier Analysis: An Introduction

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.89 14.89 5.04 9 0
Q2 15.83 15.83 3.97 6 0
Q3 18.38 18.38 2.9 13 0
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Paper B4.4: Fourier Analysis and PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.63 18.63 4.96 8 0
Q2 22 22 1.41 5 0
Q3 16.25 16.71 6.78 7 1

Paper B5.1: Stochastic Modelling and Biological Processes

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.6 11.69 2.95 16 4
Q2 13.75 18 7.84 11 5
Q3 19.62 20.5 6.76 20 1

Paper B5.2: Applied PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 10 14.84 8.09 31 15
Q2 11.33 15.97 8.2 32 14
Q3 9.6 14.72 7.83 29 16

Paper B5.3: Viscous Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.16 16.16 3.98 25 0
Q2 9.1 11.71 5.59 7 3
Q3 14.83 14.83 4.13 18 0

Paper B5.4: Waves and Compressible Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.29 16.29 5.62 21 0
Q2 14.55 16 7.07 18 2
Q3 14 14 6.08 9 0

Paper B5.5: Further Mathematical Biology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 4.5 5 2.65 10 2
Q2 10.59 11.88 4.84 25 4
Q3 17.14 17.14 5.23 35 0
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Paper B5.6: Nonlinear Systems

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.86 17.36 5.71 28 1
Q2 14.38 14.38 5.71 32 0
Q3 16 16 4.32 4 0

Paper B6.1: Numerical Solution of Differential Equations I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.84 20.84 5.07 19 0
Q2 19.67 19.67 4.72 6 0
Q3 17.94 17.94 5.2 17 0

Paper B6.2: Numerical Solution of Differential Equations II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.22 15.81 6.04 26 1
Q2 20.89 20.89 4.57 27 0
Q3 15.14 17.4 5.4 5 2

Paper B6.3: Integer Programming

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.25 15.25 6.7 4 0
Q2 20.33 20.33 4.03 6 0
Q3 17.11 18.13 4.34 8 1

Paper B7.1: Classical Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.88 15.8 4 15 1
Q2 16.6 16.6 4.93 10 0
Q3 18.82 18.82 2.89 11 0

Paper B7.2: Electromagnetism

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 9.24 9.95 4.04 19 2
Q2 9.14 9.29 3.52 21 1
Q3 9 10.7 5.23 10 3
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Paper B7.3: Further Quantum Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14 14 4.67 20 0
Q2 11.13 11.13 4.84 16 0
Q3 7.14 10.25 4.3 4 3

Paper B8.1: Martingales through Measure Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.52 12.77 5.03 47 1
Q2 11.53 11.53 5.82 17 0
Q3 13.2 13.93 5.26 46 3

Paper B8.2: Continuous Martingales and Stochastic Calculus

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 4.33 4.5 3.14 4 2
Q2 15 15.43 5.71 30 1
Q3 16.18 16.69 5.11 32 1

Paper B8.3: Mathematical Models of Financial Derivatives

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.29 17.29 6.87 42 0
Q2 16.65 18 8.17 23 3
Q3 16 19.26 7.61 19 6

Paper B8.4: Communication Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.51 13.95 5.36 39 2
Q2 17.24 17.58 6.43 40 1
Q3 12 13.82 4.64 11 4

Paper B8.5: Graph Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.15 16.72 6.93 25 1
Q2 18 19.26 6.6 19 2
Q3 14.53 15.38 5.33 16 1
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Paper SB1.1/1.2: Applied Statistics/Computational Statistics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.33 15.33 2.16 6 0
Q2 15.67 15.67 2.25 6 0
Q3 16.2 16.2 5.07 5 0
Q4 8 8 0 1 0
PR 25.33 25.33 2.58 6 0

Paper SB2.1: Foundations of Statistical Inference

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.65 16.65 4.91 17 0
Q2 18.4 18.4 4.95 15 0
Q3 11.8 12.75 5.36 4 1

Paper SB2.2: Statistical Machine Learning

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.88 19.07 5.68 15 1
Q2 15.96 15.96 3.39 24 0
Q3 14.09 16.22 7.98 9 2

Paper SB3.1: Applied Probability

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.82 17.08 5 48 1
Q2 17.35 17.35 4.87 48 0
Q3 16.17 16.17 5.57 18 0
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Assessors’ comments on sections and on individual questions

The comments which follow were submitted by the assessors, and have been reproduced with
only minimal editing. The examiners have not included assessors’ statements suggesting
where possible borderlines might lie; they did take note of this guidance when determining
the USM maps. Some statistical data which can be found in Section C above has also been
removed.

B1.1: Logic

Question 1 This was the most popular question where one could gain very easy 10 marks
in part (a). Several candidates failed to take care of the fact that in sequent calculus (SQ)
the set of assumptions may change from line to line. Others used a double negation rule
without proving it (though it is easy to do so in SQ). And didn’t set up the proof of the
Completeness Theorem for SQ the right way, even though it is the exact same setup as in
the course.

Question 2 Many candidates had difficulties presenting a concrete example in part (a)(ii).
In part (b)(i), axiom A7 was often applied in order to replace different closed terms in a
formula rather than only replacing different variables for each other. Very few candidates
got part (b)(ii) right, especially regarding the interpretation of predicate symbols. And in
part (c)(iii) the models presented were in general no term models, indeed, but they often
failed to be models of the given theory at all.

Question 3 In part (b)(i) only few candidates managed to produce a complete list of vector
space axioms in the given language. In part (c)(ii) candidates often failed to point out that
the cardinality of a vector space over a finite field is countably infinite if and only if its
dimension is so. Otherwise this part was very well done.

B1.2: Set Theory

Question 1 (a) These assertions (both true) were generally clearly shown.

(b) These were generally well done, with (i) and (ii) generally proved by transfinite in-
duction. Attempting (iii) by induction caused difficulties. Part (iv) was accomplished in
various ways: suitable distributive laws, explicit orders, or via (iii).

(c) This question was generally well done, showing carefully that in (i) the chain condition
holds, while offering clear examples of its failure in (ii).

(d) This problem was found difficult, with many offering arguments that depended on the
Axiom of Choice via Cardinal Comparability.

Question 2 (a) These bookwork questions were generally done without difficulty.

(b) This problem is of a standard type. It was generally carefully done though some were
careless in the formal set up. Constructing the required sequence of sets requires class
recursion under suitable hypotheses.

(c) These cardinality problems were found challenging with many offering only incomplete
attempts. Upper bounds were rather easy in (i) and (iii) but lower bounds required some
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ingenuity. Various solutions were given. In (ii) both upper and lower bounds require some
work, not always fully articulated.

Question 3 (a) These were generally well done, most finding the counterexample in (iii).

(b) Part (i) was generally well done. Many gave the standard approach in (ii), but quite a
few tried to write down an explicit fixed point. While the first uncountable ordinal worked
well, smaller choices led to long arguments that did not always conclude.

(c) This was generally well done, though some treatments of (i) were overly complicated.

B2.1 Introduction to Representation Theory

Question 1 Q1 was the least popular question, perhaps understandably so as it involved
the most amount of unseen material. Several candidates had a good go at parts (a,b,c)
nevertheless. However the more difficult part (d) proved to be a challenge too far, and
no-one managed to get to the end of it correctly.

Question 2 Q2 was done well by those candidates who attempted it. Several people got full
marks and it was pleasing to see students were comfortable with both proving and applying
the formula for the character of the induced representation.

Question 3 Q3 was the most popular question. Part (a) was bookwork and part (b)
was seen in problem classes. The calculation of the character table in part (c) was mostly
done well up to the point of having to calculate the values of the degree three irreducible
characters on the elements a and a3. Some students came up with the pretty idea of inducing
a linear character of the index 3 subgroup of G generated by a up to G, as an alternative to
relying on the Row and Column Orthogonality Theorems; this solution is more elementary
but arguably more tricky.

B2.2: Commutative Algebra

Question 1 Q1 and Q2 were the most popular questions. In (a) of Q1, an inductive
argument is needed and this was not seen by all the candidates.

Question 2 In Q2 (c), some students attempted to give proof using localisation, but without
exploiting the noetherian property.

Question 3 Q3 was also attempted by quite a few candidates. Only a few students used
the standard basis of open subsets of Spec(R) when tackling Q3 (d).

B3.1: Galois Theory

Question 1 Part (a) was standard, but some people forgot to check the homomorphism
property. Part (b) was mostly done well, but not everyone saw the shortcuts (i): Q(η) is
real hence can’t be equal to Q(ζ), and (ii): ζ is a root of t2 - η t + 1. In part (c), it was
a little disappointing to see a large number of students unable to calculate the subgroup
lattice of C2 × C4 correctly. For the last part, only very few students spotted the trick of
using the subfields generated by ζ3 and ζ5, together with part (a).

Question 2 Possibly the easiest question, containing a large part of bookwork, but sur-
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prisingly not as popular as it should have been. Parts (a,b,c) were done well. For part (d),
an intimate knowledge of the group structure of the symmetric group S4 would have been
helpful: all you have to do is show the image of the Galois group contains no 3-cycles and
that the discriminant of cubic the polynomial whose roots are three given quantities is a
square.

Question 3 Parts (a) and (b) were uniformly done well. Part (c) was probablematic, es-
pecially the forward implication. Almost no-one got part (d) correctly as it was intended.
Several students gave correct alternative proofs for part (d) ignoring the “deduce” instruc-
tion, nevertheless earning significant partial credit.

B3.2: Geometry of Surfaces

Question 1 For (a), I preferred candidates to include orientability/non-orientability in the
statement of the classification, which some did not. For (b), I preferred candidates to give
some evidence that they could calculate vertex identifications in the planar model, rather
than just saying V = 2.

Parts (c),(d) were found most difficult. For (c), the correct necessary and sufficient condition
is that pairs of identified sides should have the same length, and internal angles should sum
to 2π at each vertex. For the majority of candidates who did not see this, they could still
have computed the area to be 4π using Gauss–Bonnet and got the marks for that, but most
did not.

For (d), the intended ‘famous result’ was the Gauss Uniformization Theorem, preferably
in the form stated in the course, that a compact connected Riemann surface admits a
compatible Riemannian metric of Gaussian curvature κ = 1, 0 or −1. Only a minority got
this; more realized that the Uniformization Theorem was wanted, but could not state it
correctly.

Question 2 Nearly all the candidates knew the bookwork and did very well on (a). Most did
well on (b)–(d) too. Part (e) was difficult, and only one candidate got it completely correct,
so I gave part marks. Say for n = 3, β acts by rotation by 2π/3 about the (vertical) z-axis,
and α acts by rotation by π about the (horizontal) x-axis (many candidates incorrectly
said α was a reflection), and αβ, αβ2 also act by rotation about (horizontal) axes in the
x, y plane. The surface must have symmetries α, β, and for the action to be free, must not
intersect the axes of rotation of β, α, αβ, αβ2.

The picture I was hoping for was of a horizontal torus with rotational symmetry about
the z-axis, with holes drilled through around the axes of rotation of α, αβ, αβ2 (horizontal
at angles 2π/3), each axis adding two holes, so genus 7. The most common picture had
the extra holes drilled vertically rather than horizontally, giving a surface with the correct
symmetry, but intersecting the axes of rotation of α, αβ, αβ2, giving a non-free action.

Question 3 This question really rewarded candidates who could calculate without making
mistakes. Disappointingly, this excluded the majority, so the marks on this question were
lower than questions 1,2.

The point of (b) was that X is preserved by the ambient isometry of R3 which rotates the
(x, y) plane by angle t, and translates the z axis by t, for t ∈ R; this acts on the coordinates
(u, v) of X by (u, v) 7→ (u, v+ t). Only a few saw this. Most candidates verified laboriously
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that r(u, v + t) satisfies the equation for X, which is trivially true as r(u, v) does. With
hindsight, the question would have been clearer if it had said ‘map r(u, v) 7→ r(u, v + t)’
rather than ‘map (u, v) 7→ (u, v + t)’.

Some candidates defined Gaussian curvature κ as the product of principal curvatures κ1κ2,
rather than giving the formula (LN−M2)/(EG−F 2). Those attempting to compute using
κ1κ2 invariably came to a sticky end.

B3.3 Algebraic Curves

With hindsight the tricky parts of the questions were probably not quite tricky enough,
so that candidates who knew and understood the course well and could calculate without
making mistakes could get close to full marks. Many candidates did make plenty of mistakes
in calculations, especially in Question 2. Questions 1 and 2 were by far the most popular.
Only one candidate managed 3(d),(e).

B3.4: Algebraic Number Theory

Question 1 Parts (a) and (b) were well answered; part (c) was found difficult by many of
the candidates, with only a few getting out (c)(ii) and (iii) completely.

Question 2 Question 2 was very well answered in general by most of those who attempted
it.

Question 3 For part (b), many candidates had trouble explaining why no principal ideal
could have norm 2; for part (c), some candidates had trouble with the initial Minkowski
bound computation; part (d) was not attempted by all candidates but was general well
answered by most of those who attempted it.

B3.5 Topology and Groups

Question 1 This question tested the understanding of homotopy theory. The general level
of solutions was good. In part (a)(ii), some solutions missed the check that the constructed
spaces were not homotopy equivalent, and in some cases, the retraction was not continuous.
Part (b)(ii) was generally fine, but some candidates did not use that A was a retract, or
they assumed it was a homotopy retract. The description of the homotopy was sometimes
missing in part (b)(ii). There were a number of incorrect proofs for (b)(iii), but several
candidates got the right maps.

Question 2 This question was very popular and there were lots of good solutions. It tested
knowledge of the Seifert–van Kampen theorem. The solutions were generally longer than
for the other two questions. Many of the definitions in part (a)(i) were imprecise. In part
(a)(ii), one has to take canonical presentations for the definition of pushouts. Part (b)(i)
was generally fine, though some solutions failed to identify 〈a, b | aba−1b−1〉 as Z2 and 〈a〉
as Z.

Question 3 This questions turned out to be more difficult than the other two. It tested
knowledge of covering spaces. In part (a)(i), the definition of a covering space was often
missing details, such as X and X̃ have to be path-connected. Part (a)(ii) was usually fine,
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but the proof that the number of preimages of a point is locally constant was sometimes
imprecise. There were relatively few correct proofs for part (a)(iii). Most noticed that the
map induced on π1 has to be trivial, but they thought this automatically meant the map was
null-homotopic. The key is to lift the map to the universal cover of S1, which is contractible.
In part (b)(ii), some had issues with induction. The simplest argument involves removing a
leaf. In part (b)(iii), there were often missing details from the proof that X̃ admits a graph
structure. Part (c) was harder, but there were several correct solutions.

B4.1: Functional Analysis I

Question 1 Almost all candidates attempted this question. Parts (a), (b)(ii) and (d) were
handled generally well. Surprisingly, the bookwork part (b)(i) caused some problem. A
typical answer for part (c) involves showing, for any Cauchy sequence (xn), the convergence
of (Txn) and (xn−STxn). While most candidates handled the former correctly, only about
a quarter could handle the latter. About a third of the candidates attempted part (e), and
about half of them answered it correctly.

Question 2 Parts (a) and (b) were handled generally well. In part (c), most candidates
tried a 3ε-argument, but quite a few messed up the order in which the parameters should be
chosen. In part (d)(i), while most could identify a suitable dense subspace, a large number
of candidates incorrectly deduced the existence of T by invoking an extension theorem. Few
candidates attempted (d)(ii), almost all of them thought of an oscillatory function, but only
a handful constructed the right function.

Question 3 About half of the candidates attempted this question, and most of them did
well on the other problem(s) they tried. Parts (a), (b)(i), c(ii) were handled generally well.
The other parts were tried with variable degrees of success.

B4.2: Functional Analysis II

Question 1 (a) Most of the candidates know the meaning of weak convergences and uniform
boundedness of Principle. (b) Some of the candidates did not use the fact that sequentially
weakly closed set is closed. They did not mention the convexity of K. Moreover, for the
question (ii), some candidates did not used the Bessels’ inequality and constructed correctly
the space. (c) Some candidates did not use the convexity of K. Overall, this is a successful
paper with lots of concepts covered and can distinguish whether the candidates understand
the concepts or not.

Very few students attempted to tackle Qn1 related to definitions and properties of weak
convergence in Hilbert spaces. Although from the technical point of view it was the easiest
question.

Question 2 Qn 2 contains a certain bookwork. One could expect that students would go
through it easily but it was not so.

Question 3 Qn 3 was the most popular one among students. The first part of it has been
done well by many of them. In part (b), the difficult point was to prove completeness
of the corresponding operator space. No good solutions were in part (c) where students
try to calculate operator norms directly. Here, one needs to use Parseval’s identity and
computation of the norm with the help of inner product
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B4.3: Distribution Theory

Question 1 1 was attempted by many candidates despite probably being the hardest
question on the paper. There were a few good solutions, but nobody got the full 25 marks.
Parts (a)(i)–(ii) consist of bookwork and easy variants and only few marks were lost here.
The calculation of the distributional derivative in (a)(iii) also didn’t cause any difficulties,
but many lost marks in (a)(iv) on the nondifferentiability of the Takagi function and its
distributional derivative. Part (b) concerns a distribution defined via a principal value
integral and (b)(i), where candidates must show that it is well-defined, attracted some good
answers. Only very few candidates managed to give a correct counter example in (b)(ii).

Question 2 was the least popular question. Part (a) is book work and was done well by
those who attempted it. Part (b) elaborates on the RiemannLebesgue lemma and rates of
convergence. Despite not being difficult only very few got this part right.

Question 3 was the most popular question. It explores localisation of distributions, fun-
damental solutions and the Cauchy-Riemann equations. Part (a) is book work and an easy
example that was also covered in lectures. It was done well by all candidates. The calcula-
tions required for full marks in (b)(i) was only presented by very few candidates, whereas
the remaining parts (b)(ii)–(iv) went quite well.

B4.4: Fourier Analysis and PDE’s

Question 1 was attempted by most candidates. Part (a) consists of book work and closely
related material and it was done by all with very few marks being lost. However, all
candidates lost some marks on part (b). The question concerns the Bessel kernel on the
real line and has some resemblance to a question on one of the problem sheets where a
subordination principle was used to calculate a Fourier transform in n dimensions.

Question 2 was the least popular question, but went well for those who attempted it. Part
(a) consists of book work and variants thereof and as expected went well with very few
losing any marks. The second part concerns L2 based Sobolev spaces and versions of the
convolution rule.

Question 3 was attempted by most candidates. It concerns periodic distributions and
Fourier series, and starts in (a) with some book work and variants that mainly consist in
rewriting formulas that are given in the question. Part (b) is an example involving the
Poisson summation formula, where the latter is not immediately applicable. But using
some of the reasoning from part (a) it is not difficult to show that it still applies. The
marks being lost in this question were mainly because this argument was not done carefully
enough.

B5.1: Stochastic Modelling and Biological Processes

Question 1 In all questions, candidates demonstrated good understanding of the bookwork
material. In fact, there was a relatively large proportion of candidates who attempted to
solve all three questions and many of them presented good attempts to solve the parts of
each question covering bookwork.

Question 1 covered the material from the first third of the course. Most of the candidates
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were able to write down the chemical master equation and they applied a range of techniques
to further analyse it. Common difficulties included errors in solving both time-dependent
and stationary chemical master equations.

Question 2 Most of the candidates showed that they have to solve suitable PDEs in 2D
or 3D. Common difficulties included errors in using polar (in 2D) and spherical (in 3D)
coordinate systems to solve the corresponding PDEs.

Question 3 Question 3 covered the material from the last third of the course. It was
nice to see that the candidates showed good understanding of the more advanced course
material. Some of them presented very good attempts at all parts of Question 3, with a
few candidates even getting perfect raw marks of 25.

B5.2: Applied PDEs

Question 1 This question had two parts, the first (part (a)) was about find a 3D Green’s
function for Laplace’s equation and writing down a general solution for the boundary value
problem in question. This part was generally well done by most students who attempted
this question. Typical errors involved getting signs wrong. In the second part (part (b))
the task was to find a self-similar solution for a fourth order PDE boundary value problem.
The formulation of the ODE boundary value problem was generally done well, though some
students complicated the task by expanding derivatives and introduced algebraic errors or
got lost in the algebra as a result. Some did not realise that the similarity exponent β is not
fixed by scaling arguments. Despite the hints, only very few students realised how to solve
the linear ODE / boundary value problem. Even fewer understood the interplay between
the boundary conditions and the permissible roots for n and also the restriction arising on
β (namely, that β > 0 is required).

Question 2 Q2(a) was bookwork and usually done well. Q2(b) had two parts, the solution
for t < 1 and for t > 1. The former was done well, thought students often went to too
much trouble by rederiving the solution in the smooth parts using characteristics rather
than “plugging into” the PDE/initial values. Marks were dropped for not showing the
rarefaction wave is a solution, or showing the shock trajectory satisfies the RH condition.
The part for t > 1 was more difficult and students did not explain well what happens at
t = 1 and did not change u− to the appropriate time dependent form, hence obtaining the
wrong shock trajectory. Q2(c), subparts (i) and (ii) were done well, sometimes the sketches
of the initial condition were very unclear or the idea of “periodic repetition” not made clear
in words of formulae in (ii). The last part (iii) was difficult and only few students made
progress here. The difficulty was to obtain the right rarefaction wave and recognising how
this affected the shock trajectory. The limit t→∞ was almost never obtained correctly.

Question 3 Part (a) was essentially bookwork or a straightforward calculation for the
characteristic speed. Most students got this right, except for some algebraic errors when
calculating the characteristing speed. Similarly, most student got the Rankine-Hugoniot
condition for the shock speed right and, except for algebraic errors, obtained the expression
for u1 and s in terms of h1 in (b). The difficult part was part (c). A large number of
students got the criterion for causality right but failed in the subsequent algebra or in
arguing correctly through all cases. Some obtained a value for H but in a number of cases
this value was not correct due to algebraic error.
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B5.3: Viscous Flow

Question 1 This question was attempted by all bar one of the candidates. The bookwork
contained in part (a) was generally done well although some candidates forgot to define the
fluid velocity u when stating Reynolds’ Transport Theorem (RTT), some forgot later that
they couldn’t directly apply RTT to a vector quantity, and some candidates were lax in
their definitions of the stress vector and stress tensor (the most common mistake was to not
define n as the normal to the surface element). In part (b), the lack of explicit mention that
the flow was steady threw a few candidates off track, while others stated incorrect no-slip
and no-penetration boundary conditions. Almost all candidates found the solution for w1.
Disappointingly few candidates made a credible attempt at solving the problem for w2; some
did not spot the boundary conditions for at x = +− a were no-longer homogeneous, some
did not spot that they needed to look for a symmetric solution, many did not remember
the fundamental steps needed to apply boundary conditions in a fourier series setting. The
solutions by those candidates that successfully navigated these issues were mainly plagued
by algebraic manipulation errors.

Question 2 This was the least popular question. In part (a), several candidates thought
about the normal component of the stress despite the question asking only for the tangential
part (the phraseology “dimensionless shear stress at the interface” and “tangential compo-
nent of the stress at the interface”, both meaning the same thing, possibly confusing these
candidates). Some did not give a credible account of why the given solution satisfied both
Navier-Stokes and Euler equations. In part (b), some candidates failed to write out the
scaling and consequent choice of delta in a logical way and many candidates forgot to state
the matching conditions with the outer flow. In part (c)(i), some candidates copied the
answer from the question sheet hoping to gain credit for it, while others forgot to expand
the boundary conditions in a credible way. Only a small handful of candidates tried to find
the second solution to the differential equation for g. No candidates got the answer correct,
and hence none found how the velocity at the surface varied with gamma.

Question 3 This was the second most popular question, but contained a typo with v′

appearing twice in the question instead of w′. All bar one candidate took this in their
stride, and most got full or nearly full marks for part (a). The derivation of the lubrication
equation was done in several ways, often well, but the explanations of why p′− > 0 as
x− > +− infinity were less convincing. Part (c) was badly done; some candidates merely
checked that the solution given satisfied the differential equation, some candidates used the
form of the solution to make (sometimes incorrect) choices for constants in their solutions;
both factions did not receive many marks. Those that tried to solve the differential equations
and boundary conditions had limited success, with algebraic manipulation causing issues
and no candidate correctly arrived at the answer. The rider at the end of part (c) was
only attempted by a few students; of these some did not spot that the flux was constant,
others were slipped up by trivial calculations. Only one candidate got the dimensionless flux
correct and only one got the dimensionless range of x required; neither redimensionalised
these values correctly.
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B5.4: Waves and Compressible Flow

Question 1 This was the most popular question, attempted by all but three candidates.
There was a wide range of marks, from almost perfect to almost nothing. Parts (a) and
(b)(i) should have been very familiar, but several candidates struggled even with deriving
the standard linearised boundary conditions for Stokes waves and separating the variables in
Laplace’s equation. Part (b)(ii) was trickier (although similar to a question on the 2017 past
paper which was covered in a consultation session). Many candidates did not appreciate
the need to make the boundary conditions homogeneous before attempting to separate the
variables. In (b)(iii), most candidates correctly stated that the amplitude is predicted to
blow up as ω approaches one of the natural frequencies, and were also able to say something
reasonable about what really happens.

Question 2 This question was also popular, attempted by 3/4 of candidates, and again
there was a very wide range of marks. Many candidates struggled even to correctly state
the incompressible Euler equations, let alone complete the required derivation, which is
admittedly fiddly, but was covered both in the lecture notes and on Problem Sheet 2. The
elementary substitution in part (a)(ii) caused surprising difficulty for some. Part (b)(i)
was generally done quite well, although some candidates attempted to impose the wrong
boundary conditions on w (or W ). In part (b)(ii), everyone could at least state the defini-
tions of phase and group velocity, but there were many errors in actually evaluating cg. Of
course it’s easier to differentiate ω2 rather than ω (as realised by the stronger candidates),
and maybe a hint would have helped. Most candidates were able to make good progress
in part (c)(i), although they often made extra work by not spotting straight away how to
use part (b) (with n = 1). Very little progress was made in part (c)(ii), the main problem
being simplifying the expressions for cg from part (b) to a form that can easily be analysed.
Partial credit was given for those who convincingly explained the concept of bounding cg
as a function of k, even if some details were missing.

Question 3 This was by some margin the least popular question, although several who
attempted it were able to get very good marks. Parts (a)(i) and (ii) were entirely bookwork,
which just didn’t seem to have been learned properly by the weaker candidates, who were
also let down by poor basic algebraic manipulation. The new calculation in part (a)(iii)
caused a lot of difficulty, although most were at least able to interpret the result. In part (b),
almost all were able to correctly state the required modified Rankine–Hugoniot conditions,
but again many really struggled with the following basic algebraic manipulations. The
underlying problem seemed to be a lack of clarity over which quantities they’re trying to
evaluate and which to eliminate. The graph sketching in part (b)(ii) was generally done well,
although full marks required some justification (e.g. involving monotonicity) for uniqueness
of the root for v.

B5.5: Further Mathematical Biology

Question 1 This question was only answered by a few candidates and only one candidate
made significant progress. Many candidates found it challenging to derive expressions for
∧1 and ∧2, in part because they did not always see how to use the boundary conditions,
and several lost marks for the biological interpretation.

Question 2 Most candidates answered this question. Most did not correctly identify the
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range of possible phase plane behaviours in part (a). In part (b) the majority of candidates
could not properly justify why, under suitable conditions on I, the system can display
travelling waves.

Question 3 Almost all candidates answered this question. Most parts were well done,
though candidates tended to lose marks for algebraic errors in part (d).

B5.6: Nonlinear Systems

Question 1 This was a popular question. Many (most) candidates knew what they should
do for both the centre manifold reduction and the Poincaré-Lindstedt method, but there
were a lot of silly algebraic mistakes. Quite a few candidates got into trouble in part (c) by
replacing

cos2 t sin τ =

(
1 + cos 2τ

2

)
sin τ,

rather than setting

cos2 t sin τ = (1− sin2 τ) sin τ = sin τ − sin3 τ,

and using the formula given in the hint.

Question 2 This was another popular question. The question gave lots of opportunity to
make mistakes, which many candidates seized. Again, lots of these were simple algebraic
mistakes (the number of candidates who solved

y(y + µ− µ2) = 0 by saying y = 0 or y = µ− µ2

was disappointing). Most candidates knew to consider complex eigenvalues as well as real
eigenvalues in part (b), but a few forgot that when b is negative

|a+
√
b| = a2 − b not a2 + b.

The most common mistake was in part (c) in which many candidates wrote the centre
manifold as y = h(x, µ) rather than x = h(y, µ), and ploughed on regardless even though
they could see their final answer did not make sense. This error was perhaps more common
because the two eigenvalues of the linearised system at the bifurcation point were λ = 0 and
λ = 1. Even some candidates who thought about the centre linear subspace got confused
into thinking it was due to the zero eigenvalue rather than the unit eigenvalue (as it would
have been for a continuous dynamical system rather than a discrete map). In sketching the
bifurcation diagram in part (d) many candidates ignored their results from part (a) and
(b).

Question 3 This was an extremely unpopular question, despite being probably the eas-
iest question on the paper. It had the highest percentage of bookwork in part (a), and
part (b) was very straightforward. The unseen part (c) looks scary, but was also actually
straightforward, and those candidates who did attempt the question did well.

B6.1: Numerical Solution of Differential Equations I

Question 1 The question was concerned with the finite difference approximation of a
boundary-value problem for a second-order nonlinear differential equation with a cubic
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(and therefore monotonically increasing) nonlinearity, subject to homogeneous Dirichlet
boundary conditions. Almost all candidates who took the paper attempted the question,
and it was pleasing to see that even though the lectures did not explicitly cover nonlinear
boundary-value problems for second-order ODEs and elliptic PDEs, the majority recognised
that the motonicity of the nonlinearity was the key to successfully answering the question.
A small minority erroneously wrote e3

j instead of u(xj)
3 − U3

j in the difference equation
relating the global error ej := u(xj)−Uj to the consistency error ϕj . Also, several candidates
defined the discrete Sobolev norm ‖ · ‖1,h, whose definition was required by the question, as

(‖·]|2h + 1
2‖ · ‖

2
h)

1
2 , including the unnecessary factor 1/2, but the presence of the superfluous

factor 1/2 did not, ultimately, impact on the final answer.

Question 2 Only less than a third of the candidates who took the paper attempted this
question, which was concerned with the finite difference approximation of an elliptic eigen-
value problem posed on the unit square:

−∆u+ u = λu for (x, y) ∈ Ω := (0, 1)2,

subject to the homogeneous Dirichlet boundary condition u|∂Ω = 0. The answers offered by
those who attempted the first two parts of the question were mostly close to being complete.

In several of the solutions to part c) of the question Taylor series expansion of the function
x 7→ sin(x) was used, but without truncating the Taylor series using a standard formula for
the remainder term, as a result of which, instead of the desired bound

|λ1,1 − Λ1,1| ≤ Ch2,

those candidates ended up with a bound of the form

|λ1,1 − Λ1,1| ≤ C(h2 +O(h4)).

They then, mysteriously, and without any justification, discarded the O(h2) term to deduce
the required inequality.

Part (d) of the question proved to be more challenging, and only two of those who attempted
the question managed to produce a complete answer.

Question 3 The question was concerned with the finite difference approximation of the
PDE

∂u

∂t
+
∂u

∂x
= a

∂2u

∂x2
,

subject to the initial condition u(x, 0) = u0. Candidates were asked to construct implicit
and explicit central-difference approximations to the problem. This was a popular question,
and was attempted by all candidates taking the paper. Parts (a), (b), and (c) of the
question were generally well done, although some candidates erroneously approximated the
first derivative term with respect to x in the PDE by an explicit central difference scheme
even in part (a) of the question where an implicit scheme was requested. The stability
analysis of the explicit scheme in part (d) of the question was more challenging and several
of the candidates ended up using only one of the two inequalities ν2 ≤ 2aµ ≤ 1. In the final
part of the question, where the proof of practical instability of the explicit central difference
scheme for the first order hyperbolic PDE ut + ux = 0 was required to be shown, most of
those who attempted the question didn’t get beyond (correctly) stating that the complex
modulus of the amplification factor was greater than 1.
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B6.2: Optimisation for Data Science

Problems 1 and 2 proved to be more popular than Problem 3, presumably because candi-
dates solved the questions in order of presentation.

Question 2 seems to have been easier than the other two problems. Though it contained
new material, the solution could be derived by adapting seen material, and many students
succeeded in doing this, proving a excellent understanding of the material. The solutions
to all three problems I saw were generally of high quality, with serious attempts at very
technical derivations extending over several pages. The students on this course were highly
motivated, and many went over and beyond the course materials, engaging in additional
independent study, as became apparent in discussions in lectures, classes and consultation
sessions.

B6.3: Integer Programming

Problems 2 and 3 proved to be more popular than Problem 1. I suspect that the candidates
felt less confident with the technique of Lagrangian duality, which was needed to solve this
problem. this was also reflected in a lower average achieved on this problem, albeit with a
higher standard deviation due to the lower uptake.

B7.1: Classical Mechanics

Question 1 This was the most popular question and was often well answered. Common
issues were not successfully calculating the derivative of the spring potential to prove that
we are at equilibrium - this was tricky - and expanding the potential for small angles. There
were some good attempts at part (c), although several students recalculated the solution to
the equations of motion rather than using part (b).

Question 2 Of those that attempted this question, there were generally good answers to
the first part, although complete arguments were required for full marks. Part (b) had many
good attempts, particularly in deriving the Euler equations with an external torque. Going
to the complex ODE caused some issues, despite the same trick being used in the course.
Solving the ODE also caused problems, but there were several complete solutions. In the
last part care was needed to distinguish the angular velocity and angular momentum.

Question 3 This question on Hamiltonian mechanics was generally well answered by those
that attempted it. There were excellent answers to part (a) in particular. Parts (b) and (c)
were often well answered. Common issues in part (b) were in choosing the correct direction
and method to prove that the transformation is canonical, and not calculating the dynamics
of θ. Those that had the PDEs for the generating function and attempted a solution often
got part (c) correct.

B7.2: Electromagnetism

Question 1 This question was attempted by all but 5 candidates. Part a) was purely book-
work, but surprisingly many students struggled with algebra, integration, or differentiation.
Furthermore, in a.i) it was often missed to note that φ = 0 for r < a, and many students
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derived the values of q? and r? from scratch, which was not required and may have cost
precious time. A few answers tried to enforce q? = −q from the image through a plane, and
many failed to notice that a.iii) gave away the correct value of q?. Only two answers to a.iii)
used the quicker method appealing to Gauß’ theorem, whereas all other answers attempted
the integral in spherical polar coordinates, which is correct but probably took more time.
Part b.i) was almost always attempted and quite well done. Most answers correctly identi-
fied the need for infinitely many image charges and often computed their locations correctly,
but frequently their magnitudes were computed wrongly. Only a few students attempted
the geometric series in b.ii), probably due to incomplete results in b.i). Unexpectedly, only
6 students attempted c.i), and only one made substantial progress, while most apparently
did not recall that the potential is given by the Green’s function. Consequently, c.ii) was
attempted by only one student. Finally, merely 4 students attempted d), which is a pity,
as this question offered 3 points for a simple limit calculation.

Question 2 This question was the most popular and attempted by all but 3 candidates.
Producing the Gauß and Ampère laws in part a.i) was no problem but many candidates lost
points by not distinguishing the total from the free current and charge densities. In a.ii)
roughly half the candidates used the static field equations and where therefore unable to
derive the energy density, which requires the time-dependent equations. Unexpectedly, part
b.i) caused severe problems and no answer was satisfactory. Some assumed wrongly that
E and B are always orthogonal, or made unsupported assumptions about the potentials.
A few observed that the equipotentials Σa and Σb imply that E is radial at ρ ∈ {a, b},
but failed to notice that this argument does not prove anything for other values of ρ. Part
b.ii) was dealt with much better, however only a single answer received full marks. Several
candidates forgot the regions ρ < a and ρ > b where the fields vanish. Surprisingly, instead
of the simple Gauß law, many candidates tried to determine φ by solving the Laplace
equation in cylinder coordinates. This longer calculation often led to errors in the algebra,
and some struggled to correctly incorporate the boundary conditions and continuity of φ at
ρ = c. In some cases, candidates guessed the formula for φ(ρ) based on the value ρ(c) given
in the hint, but those guesses had a dependence on ρ in the denominator of φ, an error
that could have easily been catched by checking the guess against the general piecewise
form φ(ρ) = A log ρ+B that most candidates identified correctly. Only very few candidates
attempted b.iii). Those who correctly recognized that one needs to integrate the Poynting
vector, failed to do the integral due to lack of time or a wrong and too complicated result
in b.ii). The last part c) was attempted by only one candidate.

Question 3 The was the least popular question, attempted by roughly half of the candi-
dates. Part a) was done very well, although many candidates forgot to mention that the
potentials also ensure ∇ ·B = 0 and ∇× E = −∂B/∂t. In b) some struggled to integrate
the δ-distribution with argument t − t′ − R(t′)/c, which was done in the lectures. Part c)
was dealt with quite well from those who attempted it; in i) some failed to explain why
r0(t±r ) can be replaced by r0(t0); in ii) some did not realize that for the negative charge, the
sign of r0 changes, and many did not attempt to compute A (presumably for time reasons).
The last parts d.i) and d.ii) were attempted by only 3 candidates each. They computed
the leading order of P in d.ii) correctly, but struggled to extract the factor sin2 θ from the
vector products. Part d.i) was purely an exercise in differential vector calculus, but only
one answer correctly calculated B and noone made significant progress on E.

Summary. All three questions received a wide spread of marks and thus differentiated of
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candidates. The average scores were close together (between 8.5 and 9) and suggest that
the three questions were of comparable difficulty for the candidates. Apart from Q1.c.ii),
Q2.b.iii), Q2.c), and Q3.d.i), each subquestion had at least one perfect or near perfect
answer. Very few students attempted the last part of each question, which especially in the
case of Q1.d) and Q3.d.ii) meant that a lot of easy points were lost. It is apparent that
many students could have gained more points given additional time, and that overall the
exam was a little bit too long.

B7.3: Further Quantum Theory

Question 1 This question was attempted by all candidates. The bookwork section at the
start about the basics of irreducible spin representations of angular momentum was well
answered in almost all cases. The perturbation theory part was attempted by most with
roughly the correct strategy but very few managed to achieve the full set of corrections
without errors. The issue of degeneracy was irrelevant in both parts of the question, though
this required some careful consideration of the structure of the problem and was not well-
explained in most cases. The exact energy levels could be determined using partial results
from part (c) by writing an explicit four-by-four matrix and identifying its eigenvalues,
but this was not attempted by most. The last part could be solved independently and was
attempted at least in part by many; it required a simple argument involving the expansion of
coupled angular-momentum states using Clebsch–Gordan coefficients, which was recognised
in most attempts but not well executed in many.

Question 2 This was a scattering problem and the basics of the bookwork was completed
in many attempts, though the precise definition of the S-matrix and especially the argument
for its unitarity based on preservation of norms in C2 was often lacking. The heart of the
problem was a computation of reflection and transmission coefficients off of a pair of Dirac
delta functions. This was an elaboration on the single delta-function case seen in the final
homework assignment, but caused quite a bit of trouble. In a surprising number of cases,
the effect of the delta function on the matching of derivatives of the wave function was not
correctly identified despite setting up the relevant integral identity. The better attempts
did set up the matching correctly, but the subsequent calculation was a little involved and
generally was not completed without fatal error. (In most attempts, the calculation was
not very well-organised; it could be done without great complication by mimicking the
organisation of the piecewise constant potential case seen in class.) Many of the marks for
part (d) could be achieved by a careful explanation of the method for identifying bound
state energies by analytic continuation of scattering data, but only a few attempts gave a
detailed account.

Question 3 This was a WKB approximation problem and when it was attempted it proved
difficult. For the setup, it was important to recognise the basic point that the WKB
wave function in the region 0 < x < x1 could be a combination of growing and decaying
exponentials due to the additional classically allowed region at negative values of x. This
caused a number of problems. The connection formulæwere summarised well in general
terms in most but attempts though some candidates had elementary misunderstandings
about the topic. Few candidates got far into the problem of constructing the full WKB
solution, but it could be done using the connection formulæ(at the level of shifts by π/4 in
the arguments of cosines) and imposing vanishing of the wavefunction or its first derivative
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at x = 0 (corresponding to even and odd solutions, which was sufficient for reasons of
symmetry of the potential). Though the calculations required were not too involved, they
did need to be set up carefully and perhaps candidates were running low on time when
getting to this point.

B8.1: Probability, Measure and Martingales

Question 1 For part (a), students generally completed this bookwork section well. Most
students correctly identified the λ-system that contains the π-system. Some minor slips with
the definition of a λ system. In part (b), quite a few students tried to prove independence
with weaker conditions, like pairwise independence instead of an arbitrary finite subset. Not
a lot of students gave a complete reasoning for the independence with respect to H but this
was not penalised harshly. In part (c), very few students recognised that τK is a stopping
time before applying results on stopped martingales or optional stopping. Finally, quite a
few students were able to complete the first and last part of (d) even if they were unsure
as to how to fill in the details of (d)(ii). Some had the right idea for (ii) and showed that
the martingale satisfies a bound required to apply the results of (c), very few candidates
provided complete justification here.

Question 2 Part (a) was mostly well done. Students who lost a mark, or two, did so
most often by not arguing, or only partially, the closedness under monotone limits (with
bounded limit) in the monotone class theorem. Parts (b)(i)-(iii) were also mostly well done
but often with some slips or omissions. In particular, the easy inclusion in (ii) which followed
since each Xn was a measurable function of X was sometimes either forgotten or argued
in long-winded way. In (iii) the most common mistake was to show that the family (Zn) is
bounded in L1 and try to conclude UI only from that. Part (b)(iv) is where most students
struggled. Very few were able to give the expression for the conditional expectation and
argue convincingly. None actually used the defining properties of the conditional expectation
to simply give an answer and check it works. This had some adverse consequences for (c)(i)
as it was hard to establish the martingale property without a proper formula. Finally, it
seemed that students run out of time for (c)(iii). While some concluded quickly from L1
martingale convergence theorem that the first displayed formula holds, they then did not
know how to finish the argument.

Question 3 This question was divided into two, part (a) about martingales and stopping
times, and part (b) about Jensen’s inequality and conditional expectations. Starting with
the first, most candidates scored full marks for (i), with a minority losing a mark for
mistakes on basic operations of set theory. For (ii), most of the students understood the
main calculation that makes M τ a martingale, and most (but not all) of these adequately
distinguished between the two cases τ > n and τ ≤ n. In (iii) most students recognised
that the unstopped process is not a martingale but a submartingale, with some answers
lacking rigour but this was only penalised harshly. In (iv) the vast majority of students
obtained the correct formula for the expected value of the stopping time, but in many cases
they did not justify the use of the optional stopping/sampling theorem carefully enough.
For those who did, the most popular strategy was to use the version of the OST that
requires the stopping time to have finite expectation and the process to have a bound
on the conditional expectation of the absolute increments, not the more straightforward
approach of using dominated convergence and monotone convergence on different parts of
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Mτ∧n. Onto (b), most students correctly solved (i) and one inequality in (ii), with a sizeable
minority confusing convex with concave. Almost everyone, however, struggled to prove the
equality in (ii). (iv) is where the fewest marks were gained out of the whole of Question 3:
very few candidates even attempted it.

B8.2: Continuous Martingales and Stochastic Calculus

Question 1 Question 1 was attempted by just 8 candidates and most of them could not
progress too far. Two other questions were answered by most of candidates. There was a
good spread of results with averages 15 and 16 marks correspondingly.

Question 2 Most of the candidates had the right approach to Question 2, but some of
them could not complete computations. One recurring mistake was an attempt to use the
hint about cubic increments in (b)(i) instead of (b)(iii).

Question 3 There was a wide spread of different mistakes in Question 3. Some candidates
stated one version of the OST but used a different one. Functions in (b) and (c) are not
continuous at the origin, so one has to justify the application of the Ito formula. Many
candidates failed to do this. Another subtly point was in (b)(i). In order to compute
the exit probability one has to argue that the stopping time is a.s. finite, otherwise it is
impossible to extract the information from the OST. A significant minority of candidates
could not apply Levy’s characterisation in (c).

B8.3: Mathematical Models of Financial Derivatives

Overall, students did very well. Students could answer questions on the key ideas of the
Blac-Scholes model, hendging, and pricing of perpetual American options.

B8.4: Information Theory

Question 1 Part (a) is interesting. A strong student can do it in seconds, while weak
student struggled a lot. Part (b) is standard and most student can get all points in the
proof. Part (c) is a preparation for part (d) on a simple real function. Quite a lot students
could not do part (c) completely, while many of them can still do (d) with the results from
(c).

Question 2 Part (a) and (b) are similar. Some students missed minus signs in these two
parts, and some also tumbled in part (b) even with perfect answer to (a)! Part (c) is the
easiest in the whole paper, and only several students lost one or two marks in (c.ii), and
typical mistakes include confusion on the probabilities and the cardinality of a set. For
part (d), some students didn’t tried to prove the condition for the comparison; some stu-
dents could not prove the last inequality by construction and stuck in the Kraft-McMillan’s
inequality (which is correct but not useful in this question).

Question 3 Part (a) is from lecture notes and had been explained by similar exercises,
while we cannot rule out failure cases. Part (b) need a good understanding on the Shannon’s
second theorem, while quite a lot of student got full marks in this part. Part (c) is a new
question and (c.iii) is expected to be hard, while many students did surprisingly well.
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B8.5: Graph Theory

All three questions were attempted by a similar number of students, and were generally
done reasonably well.

Question 1 In question 1, several students gave various different constructions for part (e).
In particular, some students noted that if we subdivide one edge of a Kr+1 into two edges,
the resulting graph cannot be edge-coloured with r colours as both parts of the subdivided
edge must receive the same colour. It then just remains to include this graph as a subgraph
of some r-regular graph. Generally (e) seemed to be the hardest part for most students,
although many proofs for (b) and (c) were unnecessarily long-winded.

Question 2 In question 2, quite a few students just stated that the polynomial pG(x) was
the number of x-colourings. This only makes sense when x is a non-negative integer and
pG(x) should be defined as the unique polynomial that interpolates these values. In (b)
many students proved that xt divides pG(x) by induction, which is a reasonable alternative
proof. Showing that the number of k-colourings is divisible by kt is not quite enough without
explaining why kt | pG(k) for all positive integers k implies xt | pG(x). A common mistake
in (c) was assuming that G/e always has m − 1 edges. This is only the case when ` ≥ 4.
Some students also did not realise that G/e can have a cycle which is one edge shorter than
in G. In (d) students often claimed that the graph was a cycle with trees attached, and
then proceeded to count colourings by removing leaves. This is ok, but only provided that
one proves the structure of the graph is of this form.

Question 3 Question 3 was again reasonably well done, although there were more mistakes
made on this question. Several students tried to prove Menger using the edge capacity
version of Max-Flow Min-Cut, but this only gives edge disjoint paths. One should also note
that the max flow can result in some directed cycles, which should be ignored/deleted. In
(d) some students found k internally vertex disjoint paths from some u ∈ U to some w ∈W .
However the question asked for fully vertex disjoint paths so the paths must start at different
ui and end at different wj . Several students proved (d) by going back to MFMC rather
than just using Menger’s theorem. In (e) full marks were given only if a counterexample
was found for a general k, rather than just for k = 2.

BO1.1: History of Mathematics

Both the extended coursework essays and the exam scripts were blind double-marked. The
marks for essays and exam were reconciled separately. The two carry equal weight when
determining a candidate’s final mark. The first half of the exam paper (Section A) consists
of six extracts from historical mathematical texts, from which candidates must choose two
on which to comment; the second half (Section B) gives candidates a choice of three essay
topics, from which they must choose one. The Section B essay accounts for 50% of the
overall exam mark; the answers to each of the Section A questions count for 25%.

Throughout the course, candidates were invited to analyse historical mathematical materials
from the points of view of their ‘context’, ‘content’, and ‘significance’, and these were the
three aspects that candidates were asked to consider when looking at the extracts provided
in Section A of the exam paper. A number of candidates chose to use these as subheadings
within their answers. The assessors were impressed by the particularly high standard of the
answers offered this year, both in terms of factual recall and in understanding.
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The Section A questions 1–6 were attempted by 2, 6, 0, 5, 7, and 6 candidates, respectively.
The relative unpopularity of question 1 was perhaps due to the difficulties of the sixteenth-
century English in which it was written. That question 3 attracted no answers is probably
attributable to the fact that it drew upon material that appeared in just one lecture, and
then only briefly. The remaining Section A questions all touched upon topics that had been
dealt with in considerably more detail within the lecture course. In question 2, candidates
were invited to discuss Fermat’s tangent method and its place in the early development
of calculus. A key observation that was omitted by several candidates was that Fermat’s
method was a general procedure, in contrast to prior techniques that had been applicable
only to particular curves. Another problem with some answers to this question was a failure
to give a full and accurate interpretation of Fermat’s diagram — i.e., to explain the meaning
of the various labels, and to indicate why certain lines were included. A common fault in
answers to question 4 was the misinterpretation of Fourier’s ‘i’ as standing for

√
−1, when

in fact it simply labelled a general integer in his formula. Question 5 required candidates
to discuss the gradual acceptance of complex numbers; Hamilton’s representation of com-
plex numbers as pairs of real numbers was commonly omitted, however. The definition in
question 6 was in some cases misinterpreted: this is a sufficient definition for a group in the
finite case.

Some candidates clearly had a lot of knowledge that they wanted to get down on the page,
some of it going well beyond the course content. However, this did not necessarily serve
these candidates well in connection with the Section A questions, where they often strayed
a little too far from the extract at hand. Students taking this course certainly should
be encouraged to read more widely, but they need to take care in how they deploy their
knowledge in the exam. This wider knowledge became much more useful within the greater
freedom afforded by the essay questions of Section B. All three of the questions in this
section covered topics that had been explored in depth in the lecture course, so candidates
had a wealth of examples to draw upon in each case. Questions 7–9 were generally well
done, and attracted roughly equal numbers of answers: 4, 5, and 4, respectively.

The extended coursework essays were of a decent standard overall, though marks were lost
in places for too great a reliance on secondary sources — the use of primary sources was a
central part of the reading course upon which this work was based, and so this should have
been reflected in the submitted essays. Similarly, a lack of decent referencing and proper
bibliographies was penalised in a number of cases. The better essays were those that took
a particular question or point of view as their central thread, rather than simply providing
a narrative account of the writings of Newton, Maclaurin, and Saunderson.

Statistics Options

Reports of the following courses may be found in the Mathematics & Statistics Examiners’
Report.

SB1.1/1.2: Applied and Computational Statistics

SB2.1: Foundations of Statistical Inference

SB2.2: Statistical Machine Learning

SB3.1: Applied Probability
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Computer Science Options

Reports on the following courses may be found in the Mathematics & Computer Science
Examiners’ Reports.

CS3a: Lambda Calculus & Types

CS4b: Computational Complexity

Philosophy Options

The report on the following courses may be found in the Philosophy Examiners’ Report.

102: Knowledge and Reality

127: Philosophical Logic

34



D. Comments and Recommendations from the Examination Board

There were no specific recommendations from the Examination Board.

E. Names of members of the Board of Examiners

• Examiners:

Prof Damian Rössler (Chair)
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