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Motivation example

In 1977 M. Berry conjectured that high energy eigenfunctions in
the chaotic case have statistically the same behaviour as random
plane waves. (Figures from Bogomolny-Schmit paper)

Figure: Left: nodal portrait of the eigenfunction of a quarter of the
stadium with energy E = 10092.029. Right: Snapshot of a random
wavefunction with wavenumber 100 (≃

√
E )



Smooth Gaussian fields

▶ Let V ∈ Rd be an open set. A C k -smooth Gaussian field is a
Gaussian process indexed by V which has C k -smooth sample
paths. [Fields are centered throughout this talk]

▶ Kolmogorov theorem: Suppose that K : V × V → R is a
positive definite symmetric function of class C k,k(V × V )
and, in addition, that

N := max
|α|,|β|≤k

sup
x ,y∈V

|∂α
x ∂

β
y K (x , y)| < ∞.

Then there exists a (unique up to an equivalence of
distribution) C k−1 Gaussian function f on V with the
covariance kernel K . Moreover, E||f ||C k−1 ≤ C

√
N.



Stationary fields

▶ Call a Gaussian field on Rd stationary or translation invariant
if its covariance kernel K (x , y) depends only on x − y , say
K (x , y) = k(x − y).

▶ Bochner theorem: For a continuous k, k is a Fourier
transform of a finite symmetric (ρ(A) = ρ(−A)) positive Borel
measure ρ on Rd , i.e.

k(x) =

∫
Rd

e2πi(λ·x)dρ(λ).

▶ Call ρ the spectral measure of the field.

▶ The field is a fourier transform of white noise on ρ, i.e.

f (x) = Wρ(e
2πix ·t)

The properties of f ,K , ρ are closely related.



Examples: Random plane waves

▶ Spectral measure is (normalised) arc length measure on
S1 ⊂ R2. So covariance kernel is J0(|x − y |), where J0 is
zeroth Bessel function. Here the covariance function oscillates
around zero, and decays like |x − y |−1/2

▶ Local scaling limit of a number of other Gaussian fields. E.g.
Random spherical harmonics [Wig22].



Pictures

(a) Random spherical
harmonic of high degree

(b) A closer look at random plane
wave nodal lines

Figure: Both pictures by Dmitry Beliaev



Examples: Bargmann-Fock field

▶ Covariance kernel is K (x , y) = e−|x−y |2/2. Hence the spectral
measure has Gaussian-type density.

▶ The field can be written as

f (x) = e−|x |2/2
∑

n,m≥0

an,m√
n!m!

xn1 x
m
2

▶ Thought of as a limit of Gaussian ensemble of homogeneous
polynomials. So zero sets are “portrait of ‘typical’ algebraic
variety”.

▶ Many percolation theoretic properties are easier to establish in
this model because the correlation decay is very fast.



Pictures

Figure: (Left) Bargman-Fock field sample. (Right) Gaussian ensemble of
homogeneous polynomials of degree 300. The scale is d−1/2 where d is
the degree. Picture: Dmitry Beliaev



Questions

We’re interested in large scale geometry of level/excursion sets
{f = l} or {f ≥ l}. Quantities that we’re interested in:

1. Local
▶ Volume of level sets
▶ Critical point structure of the field

2. Non-local
▶ Number of components of level sets
▶ Percolation theoretic probabilities (like box crossing)



Volume of level sets

Given two coupled smooth Gaussian fields f1, f2 which are
‘close’ to each other, how close are their volume of level sets
on average?

We give an upper bound in terms of average C 2-fluctuation of the
field F = f1 − f2.



Setup

Let D ⊂ Rd be a regular enough domain. Consider two coupled
Gaussian fields f1, f2 which are

1. C 2-smooth,

2. stationary (i.e. two-point correlation function r(x , y) is
translation invariant),

3. non-degenerate ((f (0),∇f (0)) has density in Rd+1).

Let F = f1 − f2 and define its average C 2-fluctuation in D as

σ2
D = sup

x∈D
sup
|α|≤2

Var (∂αF (x)) .

Note that F might not be stationary, even if f1, f2 are stationary.



Result

Let L1, L2 denote (d − 1)-dimensional Hausdorff measures of
{f −1

1 (0) ∩ D}, {f −1
2 (0) ∩ D} respectively.

Theorem (Beliaev, H. 2023)

With the setup as above, we have

E|L1 − L2| ≤ C (D)σ
1/7
D

given that σD < 1. Here C (D) = c · vol(D)
√
log(vol(D)) where c

is a constant depending only on laws of the fields, but not the
coupling.



Comments

1. The constant c in the above theorem is fairly explicit, it
depends on things like E[|∂2

x f1(0)|2].
2. Bounding σD is also amenable, E.g. if ρ1, ρ2 are spectral

measures of f1, f2 then

σ2
D ≤ c̃vol(D) inf

ρ∈Π(ρ1,ρ2)

∫
(|s|2 + |t|2 + 1)d+1|s − t|2 dρ(s, t).

See [BM22, Thm 4.1] for an explanation.



Proof heuristics

From geometric analysis, we know

rate of change of volume of level set of f = mean curvature
of the submanifold f −1(0).

For a function f , applying divergence theorem for the vector field
∇f /|∇f | on f −1[a, b] we have the following proposition.

Proposition

Let L(t) = vold−1(f −1(t)), then for regular enough f

L(b)− L(a) =∫∫
D
κ1f ∈[a,b]dVol︸ ︷︷ ︸
Bulk term

+Boundary term.



Differentiation of nodal volumes

Fix a bounded domain D ⊂ Rd , and a Gaussian field f . Let V (f )
denote the volume of f −1(0) ∩ D. Denote by Dk,p the
Malliavin-Sobolev space (k-times differentiable with derivatives
having p moments).

▶ (Peccati-Stecconi ’24) For dimensions d = 2, 3, we have
V (f ) ∈ D1,1 and for d ≥ 4, V (f ) ∈ D1,2.

▶ Existence of absolute continuous part of V (f ) w.r.t Lebesgue
measure.

Proof hueristic is the same as before.



Further questions

1. Optimal exponent of σ in the theorem? Get a matching lower
bound.

2. Prove similar estimates for higher moments. (Challenge:
E[κ2] = ∞)

Intuition from “First variation of area formula” from geometric
analysis is the following:

E[|L1 − L2|] ≃σD · E
∫ 1

0

∫
F−1
t (0)

|κt(x)|
|∇Ft(x)|

dS(x)dt

where Ft(x) = f1(x) + t(f2(x)− f1(x)).



Next project: critical points structure

Figure: Filament structure of random plane wave. Picture by Alex Barnett



Thank you!
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