Random Matrices from the Classical Compact Groups: a Panorama

Part V: Exact Formulas for Eigenvalue Distributions

Mark Meckes

Case Western Reserve University
Oxford, 22 February 2021

Eigenvalues of unitary matrices

Basic observations:

- If λ is an eigenvalue of $U \in \mathbb{U}(n)$ then $|\lambda|=1$.
- If λ is an eigenvalue of $U \in \mathbb{O}(n)$ or $\operatorname{sp}(n)$ then so is $\bar{\lambda}$.
- $\lambda=1$ is an eigenvalue of every $U \in \mathbb{S O}(2 n+1)$, $\lambda=-1$ is an eigenvalue of every $U \in \mathbb{S O}^{-}(2 n+1)$, and $\lambda= \pm 1$ are both eigenvalues of every $U \in \mathbb{S O}^{-}(2 n)$.

We call ± 1 the trivial eigenvalues and often focus on the nontrivial ones.

Eigenvalues of unitary matrices

Basic notations:

- Eigenangles:
- For $U \in \mathbb{U}(n)$, we denote the eigenvalues as $e^{i \theta_{j}}$ for $-\pi<\theta_{j}<\pi, 1 \leq j \leq n$.
- For $U \in \mathbb{S O}(2 n), \mathbb{S O}(2 n+1), \mathbb{S O}^{-}(2 n+1), \mathbb{S O}^{-}(2 n+2)$ or $\operatorname{Sp}(n)$, we denote the eigenvalues with $\operatorname{Im} \lambda>0$ as $e^{i \theta_{j}}$ for $0<\theta_{j}<\pi, 1 \leq j \leq n$.
- Counting function: For $A \subseteq \mathbb{R}, \mathcal{N}_{A}=\#\left\{j \mid \theta_{j} \in A\right\}$.
- Spectral measure: For $U \in \mathbb{U}(n), \mu_{U}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}}$.

The Weyl integration formula for $\mathbb{U}(n)$

Theorem (Weyl)

Let $U \in \mathbb{U}(n)$ be random. The joint density of the unordered eigenangles of U is

$$
\frac{1}{n!(2 \pi)^{n}} \prod_{1 \leq j<k \leq n}\left|e^{i \theta_{j}}-e^{i \theta_{k}}\right|^{2}
$$

That is, if $f: \mathbb{U}(n) \rightarrow \mathbb{C}$ depends only on the unordered eigenvalues of U, then

$$
\begin{aligned}
\mathbb{E} f(U)=\frac{1}{n!(2 \pi)^{n}} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} & \prod_{1 \leq j<k \leq n}\left|e^{i \theta_{j}}-e^{i \theta_{k}}\right|^{2} \\
& \times f\left(\operatorname{diag}\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)\right) d \theta_{1} \cdots d \theta_{n} .
\end{aligned}
$$

The Weyl integration formula for $\mathbb{U}(n)$

Remarks on Weyl's formula:

- Weyl's formula expresses an integral of a simple function on a complicated space as an integral of a more complicated function on a simple space.
- It's a beginning and not an end!
- The proof is Lie-theoretic, based on the invariance property

$$
f(D)=f\left(U D U^{*}\right)
$$

for fixed $D, U \in \mathbb{U}(n)$.

- The density is essentially the Jacobian determinant for

$$
(\mathbb{U}(n) / \mathbb{T}) \times \mathbb{T} \rightarrow \mathbb{U}(n), \quad(U \mathbb{T}, D) \mapsto U D U^{*},
$$

where $\mathbb{T}=\{D \in \mathbb{U}(n) \mid D$ is diagonal $\}$ is the maximal torus in $\mathbb{U}(n)$.

Circular ensembles

A collection of random points $\left\{e^{i \theta_{j}}\right\}$ with density
$\propto \prod_{1<j<k \leq n}\left|e^{i \theta_{j}}-e^{i \theta_{k}}\right|^{\beta}$ is called the circular β-ensemble, and
$1 \leq j<k \leq n$
models a 1-dimensional gas with logarithmic potential at inverse temperature β.

Special values of β are related to symmetries considered in quantum mechanics:

- $\beta=2$: Circular Unitary Ensemble - eigenvalues of random $U \in \mathbb{U}(n)$.
- $\beta=1$: Circular Orthogonal Ensemble - eigenvalues of $U^{T} U$ for random $U \in \mathbb{U}(n)$.
- $\beta=4$: Circular Symplectic Ensemble.

Other Weyl integration formulas

Similar formulas exist for the other cases, e.g.:

Theorem (Weyl)

Let $U \in \mathbb{S O}(2 n+1)$ be random. The joint density of the unordered nontrivial eigenangles of U is

$$
\frac{2^{n}}{n!\pi^{n}} \prod_{j=1}^{n} \sin ^{2}\left(\frac{\theta_{j}}{2}\right) \prod_{1 \leq j<k \leq n}\left(2 \cos \theta_{j}-2 \cos \theta_{k}\right)^{2} .
$$

Fun fact: The eigenangles for $\mathbb{S p}(n)$ have the same distribution as the nontrivial eigenangles for $\mathbb{S O}^{-}(2 n+2)$.

Eigenvalue repulsion

The density is small whenever two eigenvalues (trivial or not) are close to each other.
The eigenvalues repel each other!

Eigenvalues of $U \in \mathbb{S O}(51)$ versus 51 independent uniform random points.

Joint intensities / correlation functions

The joint intensities (or correlation functions) of $\left\{\theta_{j}\right\}$ are defined by

$$
\mathbb{E} \prod_{j=1}^{k} \mathcal{N}_{A_{j}}=\int_{\Pi_{j} A_{j}} \rho_{k}\left(x_{1}, \ldots, x_{k}\right) d x_{1} \ldots d x_{k}
$$

whenever $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}$ are disjoint.
$\rho_{k}\left(x_{1}, \ldots, x_{k}\right) \approx$ the likelihood of finding one eigenangle near each of x_{1}, \ldots, x_{k}.

Determinantal point processes

Theorem (Dyson)

If $U \in \mathbb{U}(n)$ is random then the joint intensities of the eigenangles are

$$
\rho_{k}\left(x_{1}, \ldots, x_{k}\right)=\operatorname{det}\left[K_{n}\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{k},
$$

where

$$
K_{n}(x, y)=\frac{1}{2 \pi} \sum_{j=0}^{n-1} e^{i j(x-y)}=\frac{\sin \left(\frac{n}{2}(x-y)\right.}{2 \pi \sin \left(\frac{1}{2}(x-y)\right.}
$$

We say that $\left\{\theta_{j}\right\}$ is a determinantal point process on $[-\pi, \pi]$ with kernel K_{n}.
Similar versions hold for nontrivial eigenangles (with different kernels K_{n}) for all the other cases discussed today (Katz-Sarnak).

Determinantal point processes

One of the wonderful things about determinantal processes:

Theorem (Hough-Krishnapur-Peres-Virág)

Suppose $\left\{\theta_{j}\right\}$ is a DPP on \mathbb{R} with Hermitian kernel K. Given $A \subseteq \mathbb{R}$, let $\left\{\alpha_{j}\right\} \subseteq[0,1]$ be the eigenvalues of the integral operator T_{A} on $L^{2}(A)$ with kernel K :

$$
T f(x)=\int_{A} K(x, y) f(y) d y
$$

Then

$$
\mathcal{N}_{A} \stackrel{D}{=} \sum_{j} \varepsilon_{j}
$$

where $\left\{\varepsilon_{j}\right\}$ are independent Bernoulli random variables with $\mathbb{P}\left[\varepsilon_{j}=1\right]=\alpha_{j}$.

Toeplitz determinants

Theorem (Heine-Szegő formula)
If $f(z)=\sum_{k \in \mathbb{Z}} a_{k} z^{k}$ and $U \in \mathbb{U}(n)$ is random with eigenvalues $\left\{\lambda_{j}\right\}$, then

$$
\mathbb{E} \prod_{j=1}^{n} f\left(\lambda_{j}\right)=\operatorname{det}\left[\begin{array}{ccccc}
a_{0} & a_{1} & \cdots & a_{n-2} & a_{n-1} \\
a_{-1} & a_{0} & \ddots & & a_{n-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
a_{-(n-2)} & & \ddots & a_{0} & a_{1} \\
a_{-(n-1)} & a_{-(n-2)} & \cdots & a_{-1} & a_{0}
\end{array}\right]
$$

The latter is a Toeplitz determinant and asymptotics as $n \rightarrow \infty$ are well understood (Szegő limit theorem).

Traces of powers

Theorem (Diaconis-Shahshahani)

Suppose that $U \in \mathbb{U}(n)$ is random and Z is a standard complex random variable. Let $k \in \mathbb{N}$ and $p, q \in \mathbb{N} \cup\{0\}$. Then

$$
\mathbb{E}\left(\operatorname{Tr} U^{k}\right)^{p}\left(\overline{\operatorname{Tr} U^{k}}\right)^{q}=\delta_{p q} k^{p} p!=\mathbb{E}(\sqrt{k} Z)^{p}(\overline{\sqrt{k} Z})^{q}
$$

whenever $n \geq \max \{k p, k q\}$.

Note $\operatorname{Tr} U^{k}=\sum_{j=1}^{n} \lambda_{j}^{k}=: p_{k}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ (power sum).
So $\operatorname{Tr} U^{k}$ is distributed remarkably similarly to $\sqrt{k} Z$.
Moreover: The joint moments of $\operatorname{Tr} U, \operatorname{Tr} U^{2}, \ldots, \operatorname{Tr} U^{k}$ match those of independent complex normals for sufficiently large n.

Traces of powers

Ingredients in the proof:

- Products of power sums are symmetric functions.
- The space of symmetric functions is spanned by Schur polynomials, and the change of basis can be computed exactly using representation theory of symmetric groups.
- Traces of Schur polynomials are irreducible characters of $\mathbb{U}(n)$.

Will all this, the proof reduces to some fairly straightforward combinatorics.

Versions for $\mathbb{O}(n)$ and $\mathbb{S p}(n)$ are also known, but the representation theory becomes substantially more difficult.

Traces and increasing subsequences

For a permutation $\pi \in S_{k}$, let $\ell(\pi)$ be the length of the longest increasing subsequence of π.

Theorem (Rains)

(1) If $U \in \mathbb{U}(n)$ is random, then $\mathbb{E}|\operatorname{Tr} U|^{2 k}$ is the number of $\pi \in S_{k}$ with $\ell(\pi) \leq n$.
(2) If $U \in \mathbb{O}(n)$ is random, then $\mathbb{E}(\operatorname{Tr} U)^{k}$ is the number of $\pi \in S_{k}$ such that $\pi^{-1}=\pi, \pi$ has no fixed points, and $\ell(\pi) \leq n$.
(0. If $U \in \mathbb{S p}(n)$ is random, then $\mathbb{E}(\operatorname{Tr} U)^{k}$ is the number of $\pi \in S_{k}$ such that $\pi^{-1}=\pi, \pi$ has no fixed points, and $\ell(\pi) \leq 2 n$.

More complicated similar results hold for U^{m}.

Spectra of powers of random matrices

Theorem (Rains)

If $U \in \mathbb{U}(n)$ is random and $1 \leq m \leq n$, then the collection of eigenvalues of U^{m} has the same distribution as m independent copies of the eigenvalues of random matrices in $\mathbb{U}(n / m)$.
(This should be modified in an almost-obvious way if n is not a multiple of m.)

If $m \geq n$, the collection of eigenvalues of U^{m} is distributed like n independent uniform random points in the unit circle.

It can be modified in a less obvious way for other groups.

Spectra of powers of random matrices

Eigenvalues of U^{m} for $U \in \mathbb{U}(80)$ and $m=1,5,20,45,80$.

Additional references

- Daniel Bump, Lie Groups, 2 ${ }^{\text {nd }}$ edition, Springer, 2013.
- Daniel Bump and Persi Diaconis, "Toeplitz minors", Journal of Combinatorial Theory Series A 97, pp. 252-271, 2002.

