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Eigenvalues of unitary matrices

Basic observations:

If λ is an eigenvalue of U ∈ U(n) then |λ| = 1.

If λ is an eigenvalue of U ∈ O(n) or Sp(n) then so is λ.

λ = 1 is an eigenvalue of every U ∈ SO(2n + 1),
λ = −1 is an eigenvalue of every U ∈ SO−(2n + 1), and
λ = ±1 are both eigenvalues of every U ∈ SO−(2n).

We call ±1 the trivial eigenvalues and often focus on the
nontrivial ones.



Eigenvalues of unitary matrices

Basic notations:

Eigenangles:
For U ∈ U(n), we denote the eigenvalues as eiθj for
−π < θj < π, 1 ≤ j ≤ n.
For U ∈ SO(2n), SO(2n + 1), SO−(2n + 1), SO−(2n + 2) or
Sp(n), we denote the eigenvalues with Imλ > 0 as eiθj for
0 < θj < π, 1 ≤ j ≤ n.

Counting function: For A ⊆ R, NA = #
{

j
∣∣θj ∈ A

}
.

Spectral measure: For U ∈ U(n), µU =
1
n

n∑
j=1

δλj .



The Weyl integration formula for U(n)

Theorem (Weyl)
Let U ∈ U(n) be random. The joint density of the unordered
eigenangles of U is

1
n!(2π)n

∏
1≤j<k≤n

∣∣∣eiθj − eiθk

∣∣∣2 .
That is, if f : U(n)→ C depends only on the unordered
eigenvalues of U, then

Ef (U) =
1

n!(2π)n

∫ π

−π
· · ·
∫ π

−π

∏
1≤j<k≤n

∣∣∣eiθj − eiθk

∣∣∣2
× f
(
diag(eiθ1 , . . . ,eiθn)

)
dθ1 · · · dθn.



The Weyl integration formula for U(n)
Remarks on Weyl’s formula:

Weyl’s formula expresses an integral of a simple function
on a complicated space as an integral of a more
complicated function on a simple space.

It’s a beginning and not an end!

The proof is Lie-theoretic, based on the invariance property

f (D) = f (UDU∗)

for fixed D,U ∈ U(n).

The density is essentially the Jacobian determinant for

(U(n)/T)× T→ U(n), (UT,D) 7→ UDU∗,

where T = {D ∈ U(n)|D is diagonal} is the maximal torus
in U(n).



Circular ensembles

A collection of random points {eiθj} with density

∝
∏

1≤j<k≤n

∣∣∣eiθj − eiθk

∣∣∣β is called the circular β-ensemble, and

models a 1-dimensional gas with logarithmic potential at
inverse temperature β.

Special values of β are related to symmetries considered in
quantum mechanics:

β = 2: Circular Unitary Ensemble — eigenvalues of
random U ∈ U(n).
β = 1: Circular Orthogonal Ensemble — eigenvalues of
UT U for random U ∈ U(n).
β = 4: Circular Symplectic Ensemble.



Other Weyl integration formulas

Similar formulas exist for the other cases, e.g.:

Theorem (Weyl)
Let U ∈ SO(2n + 1) be random. The joint density of the
unordered nontrivial eigenangles of U is

2n

n!πn

n∏
j=1

sin2
(
θj

2

) ∏
1≤j<k≤n

(2 cos θj − 2 cos θk )
2.

Fun fact: The eigenangles for Sp(n) have the same distribution
as the nontrivial eigenangles for SO−(2n + 2).



Eigenvalue repulsion
The density is small whenever two eigenvalues (trivial or not)
are close to each other.

The eigenvalues repel each other!

Eigenvalues of U ∈ SO(51) versus 51 independent uniform
random points.



Joint intensities / correlation functions

The joint intensities (or correlation functions) of {θj} are defined
by

E
k∏

j=1

NAj =

∫
∏

j Aj

ρk (x1, . . . , xk ) dx1 . . . dxk

whenever A1, . . . ,Ak ⊆ R are disjoint.

ρk (x1, . . . , xk ) ≈ the likelihood of finding one eigenangle near
each of x1, . . . , xk .



Determinantal point processes

Theorem (Dyson)
If U ∈ U(n) is random then the joint intensities of the
eigenangles are

ρk (x1, . . . , xk ) = det
[
Kn(xi , xj)

]k
i,j=1,

where

Kn(x , y) =
1

2π

n−1∑
j=0

eij(x−y) =
sin
(n

2(x − y
)

2π sin
(1

2(x − y
) .

We say that {θj} is a determinantal point process on [−π, π]
with kernel Kn.

Similar versions hold for nontrivial eigenangles (with different
kernels Kn) for all the other cases discussed today
(Katz–Sarnak).



Determinantal point processes

One of the wonderful things about determinantal processes:

Theorem (Hough–Krishnapur–Peres–Virág)
Suppose {θj} is a DPP on R with Hermitian kernel K .
Given A ⊆ R, let {αj} ⊆ [0,1] be the eigenvalues of the integral
operator TA on L2(A) with kernel K :

Tf (x) =
∫

A
K (x , y)f (y) dy .

Then
NA

D
=
∑

j

εj ,

where {εj} are independent Bernoulli random variables with
P[εj = 1] = αj .



Toeplitz determinants

Theorem (Heine–Szegő formula)

If f (z) =
∑

k∈Z akzk and U ∈ U(n) is random with eigenvalues
{λj}, then

E
n∏

j=1

f (λj) = det



a0 a1 · · · an−2 an−1

a−1 a0
. . . an−2

...
. . . . . . . . .

...

a−(n−2)
. . . a0 a1

a−(n−1) a−(n−2) · · · a−1 a0


.

The latter is a Toeplitz determinant and asymptotics as n→∞
are well understood (Szegő limit theorem).



Traces of powers

Theorem (Diaconis–Shahshahani)
Suppose that U ∈ U(n) is random and Z is a standard complex
random variable. Let k ∈ N and p,q ∈ N ∪ {0}. Then

E(TrUk )p(TrUk )q = δpqkpp! = E(
√

kZ )p(
√

kZ )q

whenever n ≥ max{kp, kq}.

Note TrUk =
∑n

j=1 λ
k
j =: pk (λ1, . . . , λn) (power sum).

So TrUk is distributed remarkably similarly to
√

kZ .

Moreover: The joint moments of TrU,TrU2, . . . ,TrUk match
those of independent complex normals for sufficiently large n.



Traces of powers

Ingredients in the proof:

Products of power sums are symmetric functions.

The space of symmetric functions is spanned by Schur
polynomials, and the change of basis can be computed
exactly using representation theory of symmetric groups.

Traces of Schur polynomials are irreducible characters of
U(n).

Will all this, the proof reduces to some fairly straightforward
combinatorics.

Versions for O(n) and Sp(n) are also known, but the
representation theory becomes substantially more difficult.



Traces and increasing subsequences

For a permutation π ∈ Sk , let `(π) be the length of the longest
increasing subsequence of π.

Theorem (Rains)
1 If U ∈ U(n) is random, then E |TrU|2k is the number of
π ∈ Sk with `(π) ≤ n.

2 If U ∈ O(n) is random, then E(TrU)k is the number of
π ∈ Sk such that π−1 = π, π has no fixed points, and
`(π) ≤ n.

3 If U ∈ Sp(n) is random, then E(TrU)k is the number of
π ∈ Sk such that π−1 = π, π has no fixed points, and
`(π) ≤ 2n.

More complicated similar results hold for Um.



Spectra of powers of random matrices

Theorem (Rains)
If U ∈ U(n) is random and 1 ≤ m ≤ n, then the collection of
eigenvalues of Um has the same distribution as m independent
copies of the eigenvalues of random matrices in U(n/m).

(This should be modified in an almost-obvious way if n is not a
multiple of m.)

If m ≥ n, the collection of eigenvalues of Um is distributed like n
independent uniform random points in the unit circle.

It can be modified in a less obvious way for other groups.



Spectra of powers of random matrices

Eigenvalues of Um for U ∈ U(80) and m = 1,5,20,45,80.
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