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Abstract

We consider the point process of local maxima of stationary smooth Gaussian fields
in a box [−R,R]d ⊂ Rd exceeding a level u(R). We show that this point process
converges weakly, after suitable rescaling, to homogeneous Poisson point process when
u(R) → ∞ as R → ∞. Previously, it was shown only at the level u(R) of expected
maxima of the field in the box [−R,R]d. We follow [Pit96, section 15], where he showed
Poisson limit for a different point process (called ‘A-exit points’) derived from these
fields. We also comment on the structure of high critical points of these fields.

1 Introduction

Local maxima / high points of Gaussian fields is an important geometric observable in
probability theory, mathematical physics and in natural sciences. Analysis of critical points
of smooth fields is crucial in the understanding of of landscape of the field. For example,
it plays an important role in computing topological quantities like number of connected
components of level sets [BMM22].

In statistics, extreme values of Gaussian processes are vital to real-world applications and
are studied well. Limit theorems for extrema of these processes were proved in 1960’s & 70’s
cf. [LLR83]. Then later in 1990’s, Piterbarg [Pit96] showed Poisson process convergence for
so-called ‘A-exit points’ over a high level of a smooth Gaussian field of dimension d ≥ 2.

The following are some of the results pertaining to Poisson convergence of point processes
of smooth Gaussian fields (including dimension one).

1. In 1-dim, number of upcrossings at level u(T ) ≃
√
2 log T over the interval [0, T ], as

T → ∞. [LLR83, Chapter 9]

2. In dimension 2 or more, “A-exit points” over level u(R) ≃
√
2d logR in growing region

[0, R]d, as R → ∞. [Pit96, Section 15]

3. In dimension 2 or more, for local maxima over level u(R) ≃
√
2d logR in growing

region [0, R]d, as R → ∞. [Qi22, Chapter 3]

In all of the examples above, the decay of correlation of the field at infinity is around log−1 of
the distance. A somewhat related set of results include limit theorems for extremal processes
for class processes with Markovian property like Gaussian free field, branching Brownian
motion. Arguin et al. [ABK13] showed that extremal process of branching Brownian motion
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converges weakly to clustered Poisson process. Oleskar-Taylor, Sousi [ST20] showed that
high points ( level above αE[maxima], 0 < α0 < α) of discrete GFF in d ≥ 3 converges in
total variation distance to independent Bernoulli process on the lattice. In essence, we can
expect some Poisson limit for extremal process if either the covariance decays fast enough
at infinity or there’s some Markov property.

Our contribution is to consider limits for local maxima over arbitrary levels u(R) → ∞ as
R → ∞. As far as we know, this is the first time a lower level than the expected maxima in
a domain is studied in this context. Also, our result includes monochromatic random waves
(MRW) model, which is not covered in [Qi22]. Surprisingly, lowering the rate of threshold
level does not impose any additional condition on the decay rate of correlations.

Let us remark about the landscape of random planes waves in the context of Thm 2.2.
Numerical simulations by A. Barnett (See the webpage) suggests that there’s apparent
filament structure of extrema above a level (say above three std deviations of the field). Our
result indicates that these patterns disappear at high levels.

2 Setup and statement

Consider a C2+-smooth Gaussian field f : Rd → R, with d ≥ 2, P being the associated
probability measure. Let E denote the expectation with respect to P and let r(x, y) =
E[f(x)f(y)] be the covariance kernel [see [NS16, Appendix A] for more details]. For R > 0,
L = [0, 1]d ⊂ Rd and let LR = [0, R]d = R · L. Let u : R+ → R+ be an increasing
function such that u(R) ≤

√
2d logR → ∞ as R → ∞. By abuse of notation, we often write

u = u(R).

Consider the following scaling of the field f ,

fR(x) = f(µ(R) · x) for x ∈ Rd,

where

µ(R)−1 = κ1/dRu
d−1
d exp

(
−u2

2d

)
and κ = 1/(2π)(d+1)/2.

Now we define a sequence of point process indexed by R as follows. Let

ηR(B) = number of local maxima above level u(R) of the field fR in B

where B is a Borel set in Rd. Let

ΦR(B) = ηR(R ·B)

for Borel sets B in Rd. Our goal is to show that ΦR → Φ weakly as point processes where Φ
is a homogeneous Poisson point process, given that the field f satisfies some mild regularity
and correlation decay conditions (see [Kal17, Chapter 4]).

Assumptions 2.1. Throughout the article, we impose the following conditions on the Gaus-
sian field f .

1. Centred (E[f(x)] = 0), stationary (r(x, y) = r(x− y)), normalised (E[f(x)2] = 1) for
all x, y ∈ Rd.

2. Decay of correlation: r(x) = o((log ∥x∥)1−d) as x → ∞.

3. The vector (f(0),∇f(0)) has density in Rd+1. In addition, either the vector (f(0),∇f(0),∇2f(0))
has density in R(d+1)+d(d+1)/2 or f is isotropic field (i.e. r(x) = “r(∥x∥)”).
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4. Local structure: r(x) = 1−∥x∥2 + o(∥x∥2) as x → 0. Note that ∃ invertible matrix M
such that r(M · x) = 1− ∥x∥2 + o(∥x∥2) as x → 0 for any C3-smooth field f .

One observation regarding the covariance structure r is that

r(x, y) < 1 ∀x ̸= y.

This follows from stationarity of the field and the fact that r(x) → 0 as x → ∞. This is
helpful when estimating exceedance probability of the field over a large given threshold.

Theorem 2.2. With the setup above and with the Assumptions 2.1 on the Gaussian field
f : Rd → R, we have

ΦR → Φ in distribution as R → ∞

where Φ is Poisson point process with intensity measure as Lebesgue measure on Rd.

First, note that invertible linear transform T of a Poisson point process (with intensity mea-
sure λ) is again a Poisson point process with new intensity measure |det(T )|λ. So rescaling
the field as in 4. of the assumption above is just for convenience. Next, Bargmann-Fock field
and monochromatic random waves for dimension d ≥ 2 satisfy the assumptions. Indeed, the
covariance kernels have decay rates exp(−∥x∥2/2) and O(∥x∥−1/2) for Bargmann-Fock and
monochromatic random waves respectively.

Now, some comments on the scaling of the field. By Appendix A, expected maximum
of the field in the region [0, R]d is asymptotically

√
2d logR as R → ∞. Now by super-

concentration of maximum for smooth Gaussian field result [Tan15], variance of maxima
behaves like 1/ logR. Hence, for levels above α

√
2d logR with α > 1, we don’t expect to see

any point in [0, R]d. So we assume u ≤
√
2d logR (supercritical case of α > 1 is taken care

in ‘Chen-Stein method’ section anyway).

Let us illustrate our scaling procedure by taking the level to be u =
√
2dα logR. To compare

it to a homogeneous Poisson process, we need to rescale the local maxima point process to,
say, unit density. Let Mu(f, S) denote the number of local maxima of f in S ⊂ Rd with
f > u. Then,

E[Mu(f, [0, R]d)] ≃ (logR)(d−1)/2R(1−α)d.

Rescaling the point process in [0, R]d by factor R−α (ignoring log factors), we get a unit
density process, which corresponds to Φ. Note that we’ve defined Φ above by reversing this
procedure.

Plan of proof

It is well known at least since 1970’s that avoidance probabilities (i.e. P(η(B) = 0) for Borel
sets B) characterise simple point process (i.e. point processes with mass concentrated only
on atoms). Now, weak convergence of these point processes can be studied by scrutinising
avoidance probabilities and intensity measures.

Definition 2.3 (DC-ring). Let B be the Borel σ-algebra on Rd. A ring L ⊂ B is called a
DC-ring (‘dissecting covering’ ring) if for any compact set K from B, and arbitrary ϵ > 0,
there exists a finite covering of K by some sets l ∈ L such that diam L ≤ ϵ.

Let L be a ring generated by rectangles

d∏
i=1

[ti, ti + si), si ≥ 0, i = 1, 2, . . . , d
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which will be a DC-ring with the property that Φ(∂l) = 0 a.s. for any l ∈ L. Then by
[Kal17, Theorem 4.18], it is enough to show that

lim
R→∞

P(ΦR(l) = 0) = P(Φ(l) = 0), lim sup
R→∞

EΦR(l) ≤ EΦ(l) (1)

for all l ∈ L. In the proof below, we’ll show this for L = [0, 1]d but the argument works for
any l ∈ L.

First, we approximate avoidance probabilities of the sequence ΦR by the excursion probabil-
ities of the field fR (Lemma 3.1). Then we approximate excursion probabilities on rectangles
P(supR·L fR > u) by that on a grid which is fine enough (Lemma 3.2). By standard theory,
we know that for a regular enough field f with unit variance, the excursion set {f > u} is
captured by a grid with width u−1 for large u. Now we compare the excursion probabilities
of the field f to that of the field f0 which is an i.i.d copy of f on a each fixed box. This is
done by comparison method for Gaussian vectors [Pit96, Thm 1.1] and is the same as proof
of [Pit96, Thm15.2]. Lastly, from Lemma 3.4 we show that excursion probabilities of the
field f0 converges to avoidance probabilities of Poisson point process, which proves the first
part of eq. (1).

We consider the second part of eq. (1). Computing expected number of critical points of
given index of smooth Gaussian fields is classical problem in this field [Adl10]. Thanks to
Kac-Rice formulas, we know precise estimates of these quantities, even explicit result in
some cases. Using these estimates, we’ll show that

lim
R→∞

E[ΦR(L)] = E[Φ(L)].

These two parts conclude the proof of the theorem 2.2.

3 Proof

Recall that L is a unit box in Rd and let LR := R · L. Define

Pf (u, S) = P
(
sup
t∈S

f(t) ≤ u

)
and P̄f (u, S) = P

(
sup
t∈S

f(t) ≥ u

)
.

Let A be a ball centred at origin in Rd. We define Minkowski sum of two subsets A,B of
Rd as

A⊕B = {x+ y : x ∈ A, y ∈ B}.
Now we approximate the avoidance probability of point process with excursion probabilities.

Lemma 3.1. With the above setup, we have

P(ΦR(L) = 0) = PfR(u, LR) + o(1) as R → ∞.

Proof. First, observe that P(ΦR(L) = 0) ≥ PfR(u, LR). From the fact that each connected
component of {f(x) ≥ u} must have a local maximum, we have

{ΦR(L) > 0} ⊇

{
sup
LR

fR ≥ u, sup
(LR⊕A)\LR

fR < u

}
.

Note that the RHS just makes sure that LR has at least one component of {fR(x) ≥ u}
lying completely inside it. Hence,

P(ΦR(L) = 0) ≤ PfR(u, LR) + P

(
sup
LR

fR ≥ u, sup
(LR⊕A)\LR

fR ≥ u

)
.
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Now,

P

(
sup
LR

fR ≥ u, sup
(LR⊕A)\LR

fR ≥ u

)
≤ P̄fR(u, (LR ⊕A) \ LR).

Noting that vol((LR⊕A) \LR) = O(Rd−1) for large R and that P̄fR(u, S) = P̄f (u, µ(R) ·S)
and applying [Pit96, Thm 7.1], using homogeneity of the field, we have

P̄fR(u, (LR ⊕A) \ LR) ≤C · vol(µ(R) · (LR ⊕A) \ LR)u
d−1 exp(−u2/2)

=O(R−1) as R → ∞.

Now, we discretise the domain and approximate the excursion probabilities on this grid as
explained before. Let gR be some scaling (to be determined in the course of the proof).
Fixing b > 0, define Rb = bgRZd.

Lemma 3.2. For any ϵ > 0, there exists b, R0 > 0 such that for all R > R0,

PfR(u, LR ∩Rb)− PfR(u, LR) ≤ ϵ.

Proof. We have

PfR(u, LR ∩Rb)− PfR(u, LR) = P
(

sup
LR∩Rb

fR ≤ u, sup
LR

fR > u

)
.

By homogeneity of the field fR, we have (calling µ(R)Rb = R′
b )

P
(

sup
LR∩Rb

fR ≤ u, sup
LR

fR > u

)
≤ (Rµ(R))dP

(
sup
L∩R′

b

f ≤ u, sup
L

f > u

)

Now by the standard theory of excursion approximation (see [Pit96, Lemma 15.3]), when
gR = (uµ(R))−1 and b > 0 is small enough, we have

P

(
sup

[0,1]d∩R′
b

f ≤ u, sup
[0,1]d

f > u

)
≤ ϵ , R > R0.

We define λa,R given numbers a > δ > 0. Divide the rectangle µ(R)R ·L into smaller ones by
following construction. Divide each edge of µ(R)R ·L into segments of length ‘a’ alternated
by that of δ. Call λa,R the union of cubes of side length a. Note that the distance between
the cubes are greater than δ. The following lemma says that if gap between the cubes of
λa,R are small enough, then the excursion probabilities are close to that the discretisation
of Rµ(R) · L.

Lemma 3.3. For any a, ϵ > 0 given, there exists δ > 0, such that, for all R large enough
we have,

Pf (u, λa,R ∩R′
b)− Pf (u, µ(R)R · L ∩R′

b) ≤ ϵ.

Proof. We have that

Pf (u, λa,R ∩R′
b)− Pf (u, µ(R)R · L ∩R′

b) ≤ P

(
sup

λa,R∩R′
b

f ≤ u, sup
µ(R)R·L∩R′

b

f > u

)
.
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Now using homogeneity of the field,

P

(
sup

λa,R∩R′
b

f ≤ u, sup
µ(R)R·L∩R′

b

f > u

)
≤ P̄f (u, µ(R)R · L \ λa,R)

≤ vol(µ(R)R · L \ λa,R)P̄f (u, L)

≤ δ
(µ(R)R)d

(a+ δ)
P̄f (u, L)

≤ Cδ((µ(R)R)d)ud−1 exp(−u2/2)

Now, we get that the expression is bounded by c · δ where c is a constant which doesn’t
depend on R.

Let f0 be a field defined on λa,R such that on the cubes of side length a, the field is made up
of i.i.d copies of f . We now show that the excursion probability of f0 converges to avoidance
probability of Poisson point process.

Lemma 3.4. We have

Pf0(u, λa,R) → exp(−vol(L)) as R → ∞.

Proof. Let N be the number of cubes of side length a in λa,R. Then,

Pf0(u, λa,R) = (1− P̄f (u, [0, a]
d))N

by independence of the field on these cubes. Taking logarithm, it is enough to estimate

N log(1− P̄f (u, [0, a]
d)) = −NP̄f (u, [0, a]

d) +O(NP̄f (u, [0, a]
d)2).

Now,
P̄f (u, [0, a]

d) = κadud−1 exp(−u2/2)(1 + o(1))

and

N =

(
Rµ(R)

a+ δ

)d

+O((Rµ(R))d−1).

Hence,

NP̄f (u, [0, a]
d) =

(
a

a+ δ

)d

+ o(1) and NP̄f (u, [0, a]
d)2 = o(1).

Since L is a unit box and we can take δ arbitrarily small, we have the result.

Proof of Theorem 2.2. First, observe that all the proof of lemmas goes through even when
L is a finite union of finite rectangles. For any given ϵ > 0, there exists a, b, δ, R0 such that
for all R > R0,

|P(ΦR(L) = 0)− Pf (u, λa,R ∩R′
b)| ≤ ϵ.

We show that |Pf (u, λa,R ∩ R′
b) − Pf0(u, λa,R ∩ R′

b)| → 0 as R → ∞ then by Kallenberg’s
theorem (see [Pit96, Section 13]) we’re done. This is done by method of comparison for
Gaussian vectors as in Theorem 1.1 of Piterbarg, which is a generalisation of the classical
Berman inequality. For the rest of the proof, we follow argument of proof of Thm 15.2 of
[Pit96].

LetKi be a renumbering of cubes with edges of length a which comprise λa,R, i = 1, 2, . . . , N .
Let covariance of the field f0 on λa,R be denoted by r0(t, s). Define λ′

a,R,b = λa,R∩R′
b Then

by Theorem 1.1 of [Pit96], we have
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|Pf (u, λ
′
a,R,b)−Pf0(u, λ

′
a,R,b)| ≤

1

π

∑
t,s∈λ′

a,R,b

|r(t− s)− r0(t− s)|

×
∫ 1

0

(1− (hr(t, s))2)−1/2 exp

(
− u2

1 + hr(t, s)

)
dh.

(2)

Denote the summand on RHS of above equation by β(t, s). If t, s ∈ Ki for some i, then
r(t, s) = r0(t, s), hence β(t, s) = 0.
Now consider the case that t, s belong to different Ki and Kj such that |t− s| ≤ Rγ1 , where
γ1 > 0 is a constant chosen later. Since t, s belong different cubes, we have |t−s| > δ, hence
|1− r(t, s)| > γ2 > 0. So,

1

1 + r(t, s)
>

1

2
+

γ2
4
.

Now, ∑
t∈Ki,s∈Kj ,i̸=j,

|t−s|<Rγ1

β(t, s) ≤ C1

∑
|r(t, s)| exp

(
− u2

1 + r(t, s)

)

≤ C2(µ(R)R)dRγ1d exp(−u2/2(1 + γ2/2))

≤ C3u
d−1eu

2/2eγ1u
2/2 exp(−u2/2(1 + γ2/2))

→ 0 as R → ∞ if 0 < γ1 < γ2.

(3)

Here we’ve used that u ≤
√
2d logR, and Ci’s are different constants not depending on R.

Lastly, we consider the case where |t− s| ≥ Rγ1 . We have,∑
t∈Ki,s∈Kj ,i̸=j,

|t−s|≥Rγ1

β(t, s) ≤ C1

∑
|r(t, s)| exp

(
− u2

1 + r(t, s)

)

≤ C2(µ(R)R)2dr′(Rγ1) exp

(
− u2

1 + r′(Rγ1)

)
≤ C3u

2d−2r′(Rγ1) exp

(
r′(Rγ1)u2

1 + r′(Rγ1)

)
(4)

where
r′(h) := max

|t|≥h
|r(t, 0)|, h ∈ (0,∞).

Observing that the assumption on the decay of correlation (point 2 of Assumption 2.1)
implies that u2d−2r′(Rγ1) → 0, since we have u ≤

√
2d logR and d ≥ 2. In particular,

u2r′(Rγ1) → 0. Hence, ∑
t∈Ki,s∈Kj ,i̸=j,

|t−s|≥Rγ1

β(t, s) → 0 as R → ∞.

Computation of expectation

Our next goal is to show the following

lim
R→∞

E[ΦR(L)] = E[Φ(L)].
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For the case that (f(0),∇f(0),∇2f(0)) having density in R(d+1)+d(d+1)/2, [Adl10, Thm 6.3.1]
suffices. If the field is isotropic and if (f(0),∇f(0),∇2f(0)) is degenerate then the field has
to be monochromatic random wave (MRW) (see [CS18, Prop 3.10]). From Example 3.15 of
[CS18], we can calculate the limit of E[ΦR(L)] for the case d = 2. But explicit expressions
for height densities are hard to get for d ≥ 3 directly. So we shift the MRW field by an
independent normal random variable, so that the joint vector of the field, its gradient, and
hessian has density. Then we use the explicit asymptotic as in [Adl10, Thm 6.3.1].

Let us first consider the case that (f(0),∇f(0),∇2f(0)) having density in R(d+1)+d(d+1)/2.
As mentioned, we’ll use the following theorem by Adler

Theorem 3.5 (c.f. [Adl10] Theorem 6.3.1). Let f : Rd → R be a stationary, C2-smooth
Gaussian field such that (f(x),∇f(x),∇2f(x)) is non-degenerate for all x ∈ Rd. Further
assume that f(x) has zero mean, unit variance. Let Mu(f, S) denote the number of local
maxima of f in S ⊂ Rd with f > u. Then,

E[Mu(f, S)] =
vol(S) det(Λf )

1/2ud−1

(2π)(d+1)/2
exp (−u2/2)(1 +O(u−1))

where Λf is the covariance matrix of ∇f and O(u−1) is independent of choice of S.

Then by above theorem, for any Borel set B ⊂ Rd

E[ΦR(B)] = E[ηR(µ(R) ·B)]

=
vol(Rµ(R) ·B)

(2π)(d+1)/2
ud−1 exp(−u2/2)(1 +O(u−1))

= vol(B)(1 +O(u−1))

→ E[Φ(B)] as R → ∞.

(5)

Here, we’ve used the fact that determinant of covariance matrix of ∇f is 1, which follows
from point 4 of Assumption 2.1.

Now we consider the monochromatic random waves (MRW) case. Let f : Rd → R be an
MRW field. Let ϵ > 0 and consider a random variable N , independent of the field f , which
is standard normal variate. Define,

fϵ(x) := f(x) + ϵN, x ∈ Rd.

Observe that fϵ is still a centred, stationary field and that fϵ(0),∇fϵ(0),∇2fϵ(0) is a Gaus-
sian vector with density. Define M(u, g) to be the number of local maxima of a Gaussian
field g in [0, 1]d.
Now we have, by an application of Kac-Rice formula,

E[M(u, fϵ)] =

∫
R
E[M(u− ϵb, f)|N = b]ϕ(b)db.

where ϕ is the pdf of standard normal variate. Also,

M(u− ϵb, f) −→ M(u, f) a.s. as ϵ → 0.

We know thatM(u, f) is integrable, and monotonic w.r.t. u, so using dominated convergence
theorem,

E[M(u− ϵb, f)] → E[M(u, f)], ϵ → 0.

Since E[M(u, f)] is uniformly bounded in u, apply DCT for E[M(u− ϵb, f)]ϕ(b) to get,

lim
ϵ→0

E[M(u, fϵ)] = E[M(u, f)].

Computing E[M(u, fϵ)] is handled again by [Adl10, Thm 6.3.1] as eq (5).
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