
Asymptotic behavior of plasmas
in Euclidean space

Jonathan Ben-Artzi (Cardiff University)

Joint works with:

S. Calogero, B. Morisse, S. Pankavich

Stability Analysis for Nonlinear PDEs
15-19 August 2022
Oxford University

Jonathan Ben-Artzi (Cardiff) Asymptotic behavior of plasmas 15-19 August 2022 1 / 38



Let f (t , x ,p) ≥ 0 denote the density of (charged) particles at x ∈ Rd

having momentum p ∈ Rd at time t ≥ 0.

Phase-space evolution governed by the Vlasov equation

∂t f + v(p) · ∇x f + F [f ] · ∇pf = 0

where v = velocity v(p) = p unless otherwise stated
F = forcing term (electric field/Lorentz force)

Main goal: quantitative large-time asymptotics. In particular, behavior
of

ρ(t , x) =

∫
Rd

f (t , x ,p) dp
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What’s known? Vlasov–Poisson (VP): F = E

Existence and uniqueness: Main ingredient is a priori estimates for the
vector field p · ∇x + E · ∇p (mid-late 1980s)

Bardos-Degond (small data)
Pfaffelmoser, Schaeffer (compact support in (x ,p))
Lions-Perthame (decay of moments in p)

Long-time behavior:
Bernstein-Greene-Kruskal (1957): explicit inhomogenous traveling
wave solutions (BGK waves)
On Td : Decay to homogeneous equilibrium (‘damping’): Landau
(1946), Glassey, Guo, Schaeffer, Strauss (1990s), Mouhot-Villani
(2010), Lin-Zeng (2010s) ....
On Rd : dispersion to ‘infinity’: Horst, Rein, Pankavich,
Ionescu-Pausader-Wang-Widmayer ....
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Decay of Particle Density in Free Streaming Case

Consider the solution f (t , x ,p) to ∂t f + p · ∇x f = 0:

‖f (t , ·, ·)‖L∞x (L1
p)

= ‖ρ(t)‖L∞x = sup
x∈Rd

∫
Rd
|f (t , x ,p)|dp

= sup
x

∫
Rd
|f0(x − pt ,p)|dp

≤ sup
x

∫
Rd

sup
u
|f0(x − pt ,u)|dp

=
1
td

∫
Rd

sup
u
|f0(w ,u)|dw =

1
td ‖f0(·, ·)‖L1

x (L∞p )

One would expect even better decay in the plasma (repulsive!!) case

∂t f + p · ∇x f + F · ∇pf = 0

but that question is still largely open!
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Important Known Results for VP (d = 3)

Theorem (Bardos-Degond, 1985)
Any small data solution of (VP) satisfies

‖ρ(t)‖∞ . t−3, ‖E(t)‖∞ . t−2.

Theorem (Horst, 1990)
Any spherically symmetric solution of (VP) satisfies

‖ρ(t)‖∞ . t−3, ‖E(t)‖∞ . t−2.

Theorem (Yang, 2016)
Any solution of (VP) satisfies

‖E(t)‖∞ . t−
1
6+.
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Plan of the Talk

1 The Good: Decay for Two-Dimensional Symmetric Plasmas

2 The Bad: Arbitrarily Large Solutions Three-Dimensions

3 The Ugly: The Vlasov–Maxwell System
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Two-dimensional radially-symmetric plasmas

Radial-symmetry allows us to replace coordinates (x ,p) ∈ R2 × R2 by

r = |x |, w =
x · p

r
, ` = |x × p|2,

(3 deg of freedom instead of 4) and Vlasov–Poisson equations reduce to

∂t f + w∂r f +

(
`

r3 +
m(t , r)

2πr

)
∂w f = 0,

where

m(t , r) = 2π
∫ r

0
ρ(t ,q)q dq

and
ρ(t , r) =

1
r

∫ ∞
0

∫ ∞
−∞

f (t , r ,w , `)`−1/2 dw d`.
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Characteristics: 
Ṙ(s) =W(s)

Ẇ(s) =
L(s)

R(s)3 +
m(s,R(s))

2πR(s)

L̇(s) = 0

Define

R(t) = sup
(r ,w ,`)∈supp(f0)

R(t ,0, r ,w , `) = “farthest particle”

W(t) = sup
(r ,w ,`)∈supp(f0)

|W(t ,0, r ,w , `)| = “fastest particle”

and
U(t , r) = −∆−1ρ(t , r) = electric potential
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Difficulty in d = 2: the field doesn’t decay fast enough

⇒ always a transfer of potential energy to kinetic energy.
For characteristics satisfying m(t ,R(t)) & 1, we have

|W(t , τ, r ,w , `)− w | =

∫ t

τ

(
m(s,R(s))

R(s)
+

`

R(s)3

)
ds

(this will follow from the theorem) ≥ C
∫ t

τ

(
s
√

log(s)
)−1

ds

&
√

log(t)

and
|R(t , τ, r ,w , `)− (r + wt)| & t

√
log(t).

So we cannot hope to converge to the free-streaming solution in any
sense.
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Theorem (JBA-Morisse-Pankavich, arXiv:2202.03717)

Let f0 ∈ C1
0(R4) be radially-symmetric and let p ∈ (2,+∞]. Assume

that inf{` : (r ,w , `) ∈ supp(f0)} > 0. Then we have

W(t) ∼
√

log(t), R(t) ∼ t
√

log(t), ‖U(t)‖∞ ∼ log(t),

as well as the field and density estimates(
t
√

log(t)
)−1+ 2

p
. ‖E(t)‖p . t−1+ 2

p ,(
t2 log(t)

)−1
. ‖ρ(t)‖∞ . t−1,

and for (r ,w , `) ∈ supp(f0) the pointwise estimates

0 .W(t ,0, r ,w , `) .
√

log(t),

t . R(t ,0, r ,w , `) . t
√

log(t).
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Sketch of Proof

1. Characteristics Lower Bound: R(t)2 ≥ `r−2t2 and ∃T ≥ 0 s.t.
W(t) > 0 ∀t > T .
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2. Field Estimates: R(t)−1+ 2
p . ‖E(t)‖p . ‖E(t)‖

1− 2
p

∞ . t−1+ 2
p .

These come from writing out m(t , r) and m(t ,R(t)) and using the lower
bound on R.
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√
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R(t) . t
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This comes from looking at the change in total energy along
characteristics: d

dt

(
1
2

(
W(t)2 + `R(t)−2)+ U(t ,R(t))

)
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√

log(t),
R(t) . t

√
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6. Particle Density: ‖ρ(t)‖∞ . t−1.

This uses ideas of Horst to use backwards characteristics to estimate
the size of the w support of f (t , r ,w , `) for fixed r , ` > 0.

The problem: R ∼ r + wt +

∫∫
E ∼ r + wt + t ⇒ w ∼ 1

Jonathan Ben-Artzi (Cardiff) Asymptotic behavior of plasmas 15-19 August 2022 12 / 38



Sketch of Proof

1. Characteristics Lower Bound: R(t)2 ≥ `r−2t2 and ∃T ≥ 0 s.t.
W(t) > 0 ∀t > T .

2. Field Estimates: R(t)−1+ 2
p . ‖E(t)‖p . ‖E(t)‖

1− 2
p

∞ . t−1+ 2
p .

3. Characteristics Upper Bound: |W(t)| . log(t), R(t) . t log(t).

4. The Electric Potential: −U(t ,R(t)) ∼ log(t) and ‖U(t)‖∞ ∼ log(t).

5. Improved Characteristics Upper Bounds: |W(t)| .
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R(t) . t
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6. Particle Density: ‖ρ(t)‖∞ . t−1 and trivially ‖ρ(t)‖∞ & R(t)−2.

Jonathan Ben-Artzi (Cardiff) Asymptotic behavior of plasmas 15-19 August 2022 12 / 38



Plan of the Talk

1 The Good: Decay for Two-Dimensional Symmetric Plasmas

2 The Bad: Arbitrarily Large Solutions Three-Dimensions

3 The Ugly: The Vlasov–Maxwell System

Jonathan Ben-Artzi (Cardiff) Asymptotic behavior of plasmas 15-19 August 2022 13 / 38



Now we consider Vlasov–Poisson in three-dimensions.{
∂t f + v(p) · ∇x f + E · ∇pf = 0,
∇ · E = ρ,

where ρ(t , x) =
∫
R3 f (t , x ,p) dp.
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Theorem (JBA-Calogero-Pankavich, SIMA 2018)

1) For any constants C1,C2 > 0 there exists a smooth,
spherically-symmetric solution of (VP) such that

‖ρ(0)‖∞, ‖E(0)‖∞ ≤ C1

but for some time T > 0,

‖ρ(T )‖∞, ‖E(T )‖∞ ≥ C2.

2) For any constants C1,C2 > 0 and any T > 0 there exists a smooth,
spherically-symmetric solution of (VP) such that

M =

∫∫
R6

f0(x ,p) dp dx = C1

and
‖ρ(T )‖∞, ‖E(T )‖∞ ≥ C2.
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Reminder:

Theorem (Horst, 1990)
Any spherically symmetric solution of (VP) satisfies

‖ρ(t)‖∞ ≤
C
t3 , ‖E(t)‖∞ ≤

C
t2 .

Our results show that in the intermediate regime these quantities can
become arbitrarily large and that this may take arbitrarily long.
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Main Steps of Proof

1) Design initial data supported on spherical shell in x variable,
while p variable supported around −Cx with C > 0 to be chosen.

2) Write ODEs for particle trajectories in coordinates adapted to
spherical symmetry.

3) Obtain lower & upper bounds for R(t) uniform in time.

4) Find time T when spherical shell is so small, that density is
necessarily very large.
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Three-dimensional radially-symmetric plasmas

Spherical-symmetry allows us to replace coordinates (x ,p) ∈ R3 × R3

by
r = |x |, w =

x · p
r
, ` = |x × p|2,

(3 deg of freedom instead of 6) and Vlasov–Poisson equations reduce to

∂t f + w∂r f +

(
`

r3 +
m(t , r)

r2

)
∂w f = 0,

where

m(t , r) = 4π
∫ r

0
ρ(t ,q)q2 dq

and
ρ(t , r) =

π

r2

∫ ∞
0

∫ ∞
−∞

f (t , r ,w , `) dw d`.
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Characteristics

Particles obey the ODEs:
Ṙ(s) =W(s),

Ẇ(s) =
L(s)

R(s)3 +
m(s,R(s))

R(s)2 ,

L̇(s) = 0,

with
R(0) = r , W(0) = w , L(0) = `.
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Trajectories

A lemma about behavior of characteristics, and in particular the time
T0 when each particle is closest to origin:

Lemma
Let L > 0, P ≥ 0, y0 > 0 and y1 < 0 be given. Assume y satisfies

0 ≤ ÿ(t)− Ly(t)−3 ≤ Py(t)−2, y(0) = y0, ẏ(0) = y1.

1 ∃! minimum T0 > 0.

2 y(T0) ≤ y∗ and T0 ≥ y0−y∗
|y1| , where y∗ = y0

√
L+Py0

y2
0 y2

1+L+Py0
.

3 y(t)2 ≤ (y0 + y1t)2 + (Ly−2
0 + Py−1

0 )t2, ∀t ∈ [0,T0].
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Initial Data

Require r ≈ a0, w ≈ a1 (large and negative) and ` small:(
r +

a0

|a1|
w
)2

+
`

r2

(
a0

a1

)2

<
ε2

a2
1

and r ∈ (a0 − δr ,a0 + δr ) with δr = ε3 (ε defined appropriately)

Furthermore, require

ρ0(r) ≤ 3
4πa3

0
≤ C1, ∀r > 0,

and

ρ0(r) =
3

4πa3
0
, for r ∈

[
a0 −

1
2
δr ,a0 +

1
2
δr

]
.
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At Time t = 0

Previous conditions imply

3ε3

a0
≤ M ≤ 8ε3

a0

and
‖ρ(0)‖∞, ‖E(0)‖∞ ≤ C1.
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At Time T > 0

From Lemma: minimum of each trajectory satisfies
T0 = T0(r ,w , `) ≥ y0−y∗

|y1| , allows to find some

T ∈
(

0, inf
(r ,w ,`)∈supp(f0)

T0

]
,

so that, from Lemma:

R(T )2 ≤ (r + wT )2 + (`r−2 + 8a−1
0 r−1)T 2 ≤ · · · ≤ 10000ε4

which leads to

‖ρ(T )‖∞ ≥
3M

4π (100ε2)
3 ≥

1
2003a0ε3

≥ C2

and

‖E(T )‖∞ ≥
M

(100ε2)2 ≥
3

1002a0ε
≥ C2.
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Our theorem was later improved by Zhang to handle Ck norms:

Theorem (Zhang, 2019)

For any constants C1,C2 > 0 there exists a smooth,
spherically-symmetric solution of (VP) such that

‖ρ(0)‖Ck , ‖E(0)‖Ck ≤ C1

but for some time T > 0,

‖ρ(T )‖∞, ‖E(T )‖∞ ≥ C2.

There is also some characterization of how T depends on the initial
data.
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Plan of the Talk

1 The Good: Decay for Two-Dimensional Symmetric Plasmas

2 The Bad: Arbitrarily Large Solutions Three-Dimensions

3 The Ugly: The Vlasov–Maxwell System
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The Vlasov–Maxwell system is
∂t f + v(p) · ∇x f + (E + v(p)× B) · ∇pf = 0,
∂tE −∇× B = −j , ∇ · E = ρ,

∂tB +∇× E = 0, ∇ · B = 0,

where v(p) = p√
1+|p|2

and

ρ(t , x) =

∫
f (t , x ,p) dp and j(t , x) =

∫
v(p)f (t , x ,p) dp.

Maxwell’s equations are hyperbolic, unlike Poisson which is elliptic
⇒ existence theory is much harder.
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Important Existence and Uniqueness Results

Theorem (Glassey-Strauss, 1986)
If momenta are known to be uniformly bounded for all particles on
[0,T ], then the solution can be continued to [T ,T + h) for some h > 0.

Theorem (Glassey-Strauss, 1987)

If ‖f0‖C1 + ‖E0‖C2 + ‖B0‖C2 < ε then there is a global-in-time classical
solution and (inside the light cone)

‖E(t)‖∞ + ‖B(t)‖∞ .
1
t2 .
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If momenta are known to be uniformly bounded for all particles on
[0,T ], then the solution can be continued to [T ,T + h) for some h > 0.

Theorem (Glassey-Strauss, 1987)

If ‖f0‖C1 + ‖E0‖C2 + ‖B0‖C2 < ε then there is a global-in-time classical
solution and (inside the light cone)

‖E(t)‖∞ + ‖B(t)‖∞ .
1
t2 .

Theorem (Glassey-Schaeffer, multiple results 1990s)
Global-in-time existence results in various lower dimensional settings.
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Important Existence and Uniqueness Results

Theorem (Glassey-Strauss, 1986)
If momenta are known to be uniformly bounded for all particles on
[0,T ], then the solution can be continued to [T ,T + h) for some h > 0.

Theorem (Glassey-Strauss, 1987)

If ‖f0‖C1 + ‖E0‖C2 + ‖B0‖C2 < ε then there is a global-in-time classical
solution and (inside the light cone)

‖E(t)‖∞ + ‖B(t)‖∞ .
1
t2 .

Theorem (Klainerman-Staffilani, 2002; Bouchut-Golse-Pallard, 2003)
Reproving the 1986 Glassey-Strauss result by other methods.
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Important Existence and Uniqueness Results

Theorem (Glassey-Strauss, 1986)
If momenta are known to be uniformly bounded for all particles on
[0,T ], then the solution can be continued to [T ,T + h) for some h > 0.

Theorem (Glassey-Strauss, 1987)

If ‖f0‖C1 + ‖E0‖C2 + ‖B0‖C2 < ε then there is a global-in-time classical
solution and (inside the light cone)

‖E(t)‖∞ + ‖B(t)‖∞ .
1
t2 .

Theorem (Luk-Strain, 2014)
Some improvements of the 1986 Glassey-Strauss result (weaker
assumptions).
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Important Existence and Uniqueness Results

We work within the framework of this theorem, to obtain quantitative
asymptotic results. One of the main difficulties: we need f (t , ·, ·) ∈ C2

and E(t , ·),B(t , ·) ∈ C3.

Theorem (Glassey-Strauss, 1987)

If ‖f0‖C1 + ‖E0‖C2 + ‖B0‖C2 < ε then there is a global-in-time classical
solution and (inside the light cone)
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1
t2 .
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Important Existence and Uniqueness Results

We work within the framework of this theorem, to obtain quantitative
asymptotic results. One of the main difficulties: we need f (t , ·, ·) ∈ C2

and E(t , ·),B(t , ·) ∈ C3. Why?

Theorem (Glassey-Strauss, 1987)

If ‖f0‖C1 + ‖E0‖C2 + ‖B0‖C2 < ε then there is a global-in-time classical
solution and (inside the light cone)

‖E(t)‖∞ + ‖B(t)‖∞ .
1
t2 .

We want improved asymptotic quantitative results for the fields, which
require solving equations like �E i = −∂xiρ− ∂t j i , and we need these
in C1.
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Theorem (JBA-Pankavich, in preparation)
Non-neutral / Neutral

Every particle has a limiting velocity, achieved at rate t−1 t−2∫
f (t , x ,p) dx has a limit, convergence at rate t−1 log4(t) t−2

There exists ρ∞(p) such that

sup
(x ,p)

∣∣∣t3ρ(t , x + v(p)t)− ρ∞(p)
∣∣∣ . t−1 log7(t)

‖ρ(t)‖∞ . t−4

Similarly for j and for the derivatives of ρ, j .
There exists E∞(p) such that inside the light cone (similarly B∞)

sup
(x ,p)

∣∣∣t2E(t , x + v(p)t)− E∞(p)
∣∣∣ . t−1 log7(t)

sup
(x ,p)
|E(t , x + v(p)t)| . t−3
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The rates in the neutral case are faster than free-streaming which
suggests that there is some damping mechanism.
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Main Idea of the Proof

Particle distribution f (t , x ,p) satisfies Vlasov:

∂t f = −v(p) · ∇x f − K · ∇pf .
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Main Idea of the Proof

Particle distribution f (t , x ,p) satisfies Vlasov:

∂t f = −v(p) · ∇x f − K · ∇pf .

We want to integrate in time to establish behavior of trajectories.
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Main Idea of the Proof

Particle distribution f (t , x ,p) satisfies Vlasov:

∂t f = −v(p) · ∇x f − K · ∇pf .

Replace f with g(t , x ,p) = f (t , x + v(p)t ,p), which satisfies:

∂tg = tA(p) K︸︷︷︸
.t−2

·∇xg − K︸︷︷︸
.t−2

· ∇pg︸︷︷︸
.log2(t)

.
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First term . t−1, not good enough. Replace g with:
h(t , x ,p) = g(t , x − log(t)A(p)K∞(p),p), Vlasov becomes:

∂th = t−1A(p) (t2K − K∞)︸ ︷︷ ︸
.t−ε

·∇xg + K︸︷︷︸
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h(t , x ,p) = g(t , x − log(t)A(p)K∞(p),p), Vlasov becomes:

∂th = t−1A(p) (t2K − K∞)︸ ︷︷ ︸
.t−ε

·∇xg + K︸︷︷︸
.t−2

· ∇pg︸︷︷︸
.log2(t)

.

So ∂th is integrable in time.
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1. Characteristics

{
Ẋ (s) = v(P(s)),

Ṗ(s) = E(s,X (s)) + v(P(s))× B(s,X (s)) =: K (s,X (s),P(s))

Since we know that the fields decay . t−2 we easily find that

P∞(τ, x ,p) = lim
t→+∞

P(t , τ, x ,p)

= p +

∫ ∞
τ

K (s,X (s),P(s)) ds

exists, and P → P∞ at rate . t−1.
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2. A New Frame

Define
g(t , x ,p) = f (t , x + v(p)t ,p)
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2. A New Frame

Define
g(t , x ,p) = f (t , x + v(p)t ,p)

with characteristics (Y,P) = (X − v(P)t ,P), and

R(t) = sup
{
|Y(t ,0, x ,p)| : (x ,p) ∈ supp(g(0))

}
= “farthest particle”.
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2. A New Frame

Define
g(t , x ,p) = f (t , x + v(p)t ,p)

with characteristics (Y,P) = (X − v(P)t ,P), and

R(t) = sup
{
|Y(t ,0, x ,p)| : (x ,p) ∈ supp(g(0))

}
= “farthest particle”.

Lemma
We have the estimates

|Y(t)| . log(t) and R(t) . log(t)
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2. A New Frame

Define
g(t , x ,p) = f (t , x + v(p)t ,p)

with characteristics (Y,P) = (X − v(P)t ,P), and

R(t) = sup
{
|Y(t ,0, x ,p)| : (x ,p) ∈ supp(g(0))

}
= “farthest particle”.

Lemma
Derivatives of g grow slower than derivatives of f :

‖∇pg(t)‖∞ . log2(t)

(for f it is ‖∇pf (t)‖∞ . t)
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3. Decay of the Fields

The fields have decay rates

‖E(t)‖∞ . t−2

‖∇xE(t)‖∞ . t−3 log(t)

‖∇2
xE(t)‖∞ . t−4 log2(t)

and similarly for B.
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3. Decay of the Fields

The fields have decay rates

‖E(t)‖∞ . t−2

‖∇xE(t)‖∞ . t−3 log(t)

‖∇2
xE(t)‖∞ . t−4 log2(t)

and similarly for B.

Lemma
As a consequence we have

‖∇2
pg(t)‖∞ . log4(t)

The proof of this lemma involves a lengthy Grönwall argument.
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4. Spatial Average

Lemma
Let F (t ,p) =

∫
f (t , x ,p) dx. Then F (t ,p) converges uniformly as

t → +∞ to some F∞(p) ∈ C2
0(R3). Moreover,

‖F (t)− F∞‖∞ . t−1 log5(t)

‖∇pF (t)−∇pF∞‖∞ . t−1 log7(t).
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5. Convergence of Macroscopic Densities

Let D(p) = | det(∇v(p))|−1 = (1 + |p|2)5/2

and B(q) = ∇v−1(q), and define

ρ∞(p) = D(p)F∞(p)

j∞(p) = D(p)v(p)F∞(p)

Lemma
We have

sup
p

∣∣∣t3ρ(t , x + v(p)t)− ρ∞(p)
∣∣∣ . t−1 log6(t)

sup
p

∣∣∣t4∂xiρ(t , x + v(p)t)− Bik (v(p))∂pkρ∞(p)
∣∣∣ . t−1 log7(t)

and similarly for j (there’s also a result for ∂t j ).
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6. Convergence of the Fields

Maxwell’s equations have the form �E i = −∂xiρ− ∂t j i .

We know that
the source terms have a limit (with a rate).

Lemma

Let �ψ = η. Assume ∃η∞ s.t. |t4η(t , x + v(p)t)− η∞(p)| . t−1 log7(t).
Then ∃ψ∞ s.t. |t2ψ(t , x + v(p)t)− ψ∞(p)| . t−1 log7(t).

From this it then follows that ∃E∞(p) s.t.∣∣∣t2E(t , x + v(p)t)− E∞(p)
∣∣∣ . t−1 log7(t)

and similarly for B. This was the crucial estimate we needed!
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7. Modified Scattering

Let A(p) = ∇v(p) and K∞(p) = E∞(p) + v(p)× B∞(p) and define

h(t , x ,p) = g(t , x − log(t)A(p)K∞(p),p)

= f (t , x + v(p)t − log(t)A(p)K∞(p),p)

Lemma
Then h(t , x ,p) converges uniformly as t → +∞ to some
f∞(x ,p) ∈ C(R6). Moreover,

‖h(t)− f∞‖∞ . t−1 log7(t)

The proof uses the convergence of the fields to integrate ∂th in time.
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Thank you for your attention!
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