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Shock reflection by a wedge: Regular reflection



Shock reflection by a wedge: Mach reflection



Shock reflection by a wedge: Irregular Mach

reflection.

Self-similar flow: (~u, p, ρ)(x, t) = (~u, p, ρ)(x
t
).



Shock reflection

First described by E. Mach 1878. Reflection patterns: Regular
reflection, Mach reflection.

J. von Neumann, 1940s: on transition between patterns

Later works: experimental, computational. Asymptotic
analysis: Lighthill, Keller, Blank, Hunter, Harabetian,
Morawetz.
Reference: book by J. Glimm and A. Majda, survey by D.
Serre.

Analysis: Special models (Transonic small disturbance eq.,
pressure-gradient system, nonlinear wave eq.): Gamba,
Rosales, Tabak, Canic, Keyfitz, Kim, Lieberman, Y.Zheng,
G.-Q. Chen-W. Xiang.

Local existence results: S.-X. Chen.



More recent results for potential flow:

Existence of global shock reflection solutions for potential
flow: G.-Q.Chen-F., Elling

The complete up-to-date results on existence of regular
reflection solutions and their proofs are presented in the
monograph ”The Mathematics of Shock Reflection-Diffraction
and von Neumann conjectures” by G.-Q.Chen-F, 2018.

Other self-similar shock reflection problems:

Prandtl Reflection: Elling-Liu, Bae-G.-Q.Chen-F

Shock interactions/reflection for Chaplygin gas: D. Serre

Properties of solutions of self-similar reflection problems:
Bae-G.-Q.Chen-F, G.-Q. Chen-F.-W. Xiang, Elling.

Stability and uniqueness of regular reflection solutions. G.-Q.
Chen-F.-W. Xiang.



Shock reflection as a Riemann problem

t = 0 t > 0

(0)(0) (1)(1)

Incident Shock

Reflected Shock

ρ0, p0

ρ1, p1

~u1 = (u1, 0)

~u0 = (0, 0)

~u
· ν

=
0

Initial data: Constant (uniform) states (0) and (1):
State (0): velocity ~u0 = (0, 0), density ρ0, pressure p0.
State (1): velocity ~u1 = (u1, 0), density ρ1, pressure p1.

t > 0: Self-similar solution of compressible Euler system:

(~u, ρ, p) = (~u, ρ, p)(~ξ), where ~ξ =
~x

t
.



Potential flow system
Conservation of mass, Bernoulli’s law

ρt + div(ρ∇Φ) = 0,

Φt +
1

2
|∇Φ|2 +

ργ−1 − 1

γ − 1
= const

where:
~u = (u1, u2) – velocity
Φ – velocity potential: ~u = ∇xΦ.
ρ – density
p = ργ – pressure
γ > 1 – adiabatic exponent (it is a given constant)

Compressible Euler system: Isentropic case

∂tρ+ div(ρ~u) = 0,

∂t(ρ~u) + div(ρ~u⊗ ~u) +∇p = 0



Uniqueness/nonuniqueness for 2-D Riemann

problems in whole space

Riemann problem in whole space for Euler system:

Chiodaroli-DeLellis-Kreml(2015): 2D isentropic Euler system
1) Entropy solutions of Riemann problem are non-unique in
the class of entropy solutions isentropic Euler system.

2) Self-similar solutions of 1D structure in 2D with flat shock
are unique (reduced to 1D system of conservation laws).

Non-uniqueness results for 2D full Euler system: S. Markfelder
and C. Klingenberg (2017), Al Baba, Klingenberg, Kreml,
Macha, Markfelder (2019)



Uniqueness/nonuniqueness for Shock Reflection as

Multi-D Riemann problem in domain with

boundary
Uniqueness for shock reflection can be considered in class of:

1. Time-dependent solutions for compressible Euler system:
non-uniqueness for normal reflection, using technique of
Chiodaroli-DeLellis-Kreml;

2. Potential flow: uniqueness/nonuniqueness of general
self-similar solutions (???);

3. Potential flow: Uniqueness of regular reflection solutions
with convex shocks ( G.-Q. Chen - F.-W. Xiang). Existence of
”admissible” regular reflection solutions: G.-Q. Chen - F.;
convexity of shocks for ”admissible solutions”: G.-Q. Chen -
F.-W. Xiang.



Regular reflection in self-similar coordinates ~ξ = ~x
t

P0

(0)(1)

Incident Shock

Reflected
Shock

~u1

Given:
State (0): velocity ~u0 = (0, 0), density ρ0, pressure p0.
State (1): velocity ~u1 = (u1, 0), density ρ1, pressure p1.

Problem: Find self-similar solution: (~u, ρ, p) = (~u, ρ, p)(~ξ),

where ~ξ =
~x

t
, with asymptotic conditions at infinity

determined by states (0) and (1), and satisfying u · ν = 0 on
the boundary.



Potential flow: self-similar case
Φ(~x, t) = tψ(ξ, η), ρ(~x, t) = ρ(ξ, η) with (ξ, η) = ~x

t
∈ R

2.

Pseudo-potential: ϕ = ψ − 1
2
(ξ2 + η2).

Equation for ϕ:

div
(

ρ(|∇ϕ|2, ϕ)∇ϕ
)

+ 2ρ(|∇ϕ|2, ϕ) = 0,

with ρ(|∇ϕ|2, ϕ) =
(

K− (γ − 1)(ϕ+
1

2
|∇ϕ|2)

)
1

γ−1 .

Equation is of mixed type:

elliptic |∇ϕ| < c(|∇ϕ|2, ϕ,K),

hyperbolic |∇ϕ| > c(|∇ϕ|2, ϕ,K),

where sonic speed c is:

c2 = ργ−1 = K − (γ − 1)(ϕ+
1

2
|∇ϕ|2).



Uniform states

Solutions with constant (physical) velocity (u, v):

ϕ(ξ, η) = −
ξ2 + η2

2
+ uξ + vη + const.

Any such function is a solution.
Also (from formula) density ρ(∇ϕ, ϕ) = const, thus sonic

speed c = ρ
γ−1

2 = const. Then ellipticity region

|∇ϕ(ξ, η)| = |(u, v)− (ξ, η)| < c

is circle, centered at (u, v), radius c.



Shocks, RH conditions, Entropy condition

Shocks are discontinuities in the pseudo-velocity ∇ϕ:

if Ω+ and Ω− := Ω \ Ω+ are nonempty and open, and
S := ∂Ω+ ∩ Ω is a C1 curve where ∇ϕ has a jump, then
ϕ ∈ C1(Ω± ∪ S) ∩ C2(Ω±) is a global weak solution in Ω if
and only if ϕ satisfies potential flow equation in Ω± and the
Rankine-Hugoniot (RH) condition on S:

[ϕ]S = 0,
[

ρ(|∇ϕ|2, ϕ)∇ϕ · ν
]

S
= 0,

where [·]S is jump across S.

Entropy Condition on S: density increases across S in the flow
direction.



Shock reflection as a free boundary problem
 shock
Incident

Sonic circle

of state (2)

Reflected shock

Curved

(1) (0)

(2)

Ω

Ω0Ω1

Ω2
P0

P1

P2 P3

P4

Σ

div
(

ρ(|∇ϕ|2, ϕ)∇ϕ
)

+ 2ρ(|∇ϕ|2, ϕ) = 0 in Ω,

ρ(|∇ϕ|2, ϕ)∇ϕ · ν = ρ(|∇ϕ1|
2, ϕ1)∇ϕ1 · ν

ϕ = ϕ1

}

on P1P2

ϕ = ϕ2 on P1P4 (and prove Dνϕ = Dνϕ2 on P1P4)

ϕν = 0 on Wedge P3P4, Symmetry line P2P3,

Solve for: Free boundary P1P2 and function ϕ in Ω.
Expect equation elliptic in Ω.



Regular reflection, state (2)

P0

(0)(1)

Incident Shock

Reflected
Shock

~u1

ϕ = pseudo-potential between the reflected shock and the wall
ϕ1 = pseudo-potential of state (1)

Denote ∇φ(P0) = (u2, v2), where φ = ϕ+
ξ2 + η2

2
. Since

ϕν = 0 on wedge, then v2 = u2 tan θw.

Rankine-Hugoniot conditions at reflection point P0, for ϕ and
ϕ1: algebraic equations for u2, ϕ(P0)



Regular reflection, state (2), detachment angle

If solution exists: Let

ϕ2(ξ, η) = −(ξ2 + η2)/2 + u2ξ + v2η + C,

where C determined by ϕ2(P0) = ϕ1(P0).

Existence of state (2) is necessary condition for existence of
regular reflection

Given γ, ρ0, ρ1, there exists θdetach ∈ (0, π
2
) such that:

state (2) exists for θw ∈ (θdetach,
π
2
),

state (2) does not exist for θw ∈ (0, θdetach).

If ϕ2 exist, then RH is satisfied along the line
S1 := {ϕ1 = ϕ2}.



Weak and Strong State (2); Sonic angle
For each θw ∈ (θdetach,

π
2
) there exists two possible States (2):

weak and strong, with ρweak
2 < ρstrong2 . We always choose weak

state (2). For strong state (2), existence of global regular
reflection solution is not expected, Elling (2011) confirms that.

Location of

incident shock

Reflected

  shock

Sonic circ
le

2ξ

1ξ
1

0ξ

(1)

(2)

1ξ̄ 0

P0

S0

S1

Σ

(0)(1)

(2)

Sonic circle
of state (2)

O2

There exist θsonic ∈ (θdetach,
π
2
) such that:

State 2 is supersonic at P0 for θw ∈ (θsonic,
π
2
).

State 2 is subsonic at P0 for θw ∈ (θdetach, θsonic).



Von Neumann’s conjectures on transition between

different reflection patterns

Recall: sonic angle θsonic and detachment angle θdetach satisfy
0 < θdetach < θsonic <

π
2
.

Sonic conjecture:
Regular reflection for θw ∈ (θsonic,

π
2
), Mach reflection for

θw ∈ (0, θsonic).

Von Neumann’s detachment conjecture:
Regular reflection for θw ∈ (θdetach,

π
2
), Mach reflection for

θw ∈ (0, θdetach).

G.-Q. Chen - F.(2018): existence of regular reflection for
θw ∈ (θdetach,

π
2
) for potential flow equation.

Structure of solutions: supersonic and subsonic regular
reflections.



Supersonic regular reflection

Supersonic regular reflection: State (2) is supersonic at P0.
Structure of solution ϕ:

◮ ϕ = ϕi in Ωi, i=0,1,2.
◮ ϕ ∈ C1(P0P2P3), in particular C1 across sonic arc P1P4.
◮ Shock P0P2 has flat part P0P1, curved part P1P2, and is
C1 across P1.

◮ Equation is strictly elliptic in Ω \ P1P4.



Subsonic regular reflection

Subsonic regular reflection: State (2) is subsonic at P0.
Structure of solution ϕ:

◮ ϕ = ϕi in Ωi, i=0,1.

◮ ϕ ∈ C1(P0P2P3).

◮ ϕ = ϕ2, Dϕ = Dϕ2 at P0.

◮ Shock P0P2 is C1.

◮ Equation is strictly elliptic in Ω \ {P0}.



Existence of regular reflection solutions

Theorem 1. (G.-Q. Chen-F.). If ρ1 > ρ0 > 0, γ > 1 then a
regular reflection solution ϕ exists for all wedge angles
θw ∈ (θdetach,

π
2
). Here I skip some details related to ”attached

shocks” with P2 = P3. The type of reflection (supersonic or
subsonic) for each θw is determined by the type of State 2 at
the reflection point P0 for θw. Moreover, solution satisfies the
following additional properties:



Properties of solution: supersonic case

1) Equation is elliptic for ϕ in Ω, ellipticity degenerates near
sonic arc P1P4.

2) ϕ is C1,1 near and across the sonic arc P1P4;

3) Reflected shock is C2,β, and a graph for a cone of
directions Con(~eη, ~eS1

) between ~eη = (0, 1) and ~eS1
= P0P1;

4) ϕ2 ≤ ϕ ≤ ϕ1 in Ω, and ∂e(ϕ1 − ϕ) < 0 if e ∈ Con(~eη, ~eS1
).



Properties of solution: subsonic case

1) Equation is elliptic for ϕ in Ω, except for the sonic wedge
angle (then ellipticity degenerates at P0).

2) ϕ is C2,α inside Ω, and C1,α near and up to the reflection
point P0, and ϕ = ϕ2, Dϕ = Dϕ2 at P0;

3) Reflected shock is C2,α away from P0 and C1,α up to P0,
and a graph for a cone of directions Con(~eη, ~eS1

);

4) ϕ2 ≤ ϕ ≤ ϕ1 in Ω, and ∂e(ϕ1 − ϕ) < 0 if e ∈ Con(~eη, ~eS1
).



Stability of normal reflection as θw → π/2

 shock
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Figure: Normal reflection

Furthermore,
the solutions ϕ converge in W 1,1

loc to the solution of the normal
refection as θw → π/2.



Shock reflection: free boundary problem

div
(

ρ(|∇ϕ|2, ϕ)∇ϕ
)

+ 2ρ(|∇ϕ|2, ϕ) = 0 in Ω,

ρ(|∇ϕ|2, ϕ)∇ϕ · ν = ρ(|∇ϕ1|
2, ϕ1)∇ϕ1 · ν

ϕ = ϕ1

}

on P1P2

ϕ = ϕ2 on P1P4 (and prove Dνϕ = Dνϕ2 on P1P4)

ϕν = 0 on Wedge P3P4, Symmetry line P2P3,

For subsonic reflection: ϕ = ϕ2 and Dϕ = Dϕ2 at P0.

Solve for: Free boundary P1P2 (resp. P0P2 for subsonic case) and

function ϕ in Ω. Expect equation elliptic in Ω.



Proof of Th. 1 is obtained by solving free boundary problem
using method of continuity/degree theory in the set of
”admissible solutions”

Admissible solutions:

(a) Have structure supersonic or subsonic reflections
depending on θw. Recall: this includes ellipticity in Ω and
some regularity of P0P2 and of ϕ in P0P2P3;

(b) ϕ2 ≤ ϕ ≤ ϕ1 in Ω;

(c) satisfy nonstrict monotonicity ∂e(ϕ1 − ϕ) ≤ 0 in Ω for
any e ∈ Con(eη, eS1

).



Convexity of shock, uniqueness

Theorem 2. (Chen-F.-W. Xiang) For admissible solutions,
shock is strictly convex in its relative interior.
Moreover, regular reflection solution satisfying (1)-(2) have
cone of monotonicity (3) if and only if the shock is (strictly)
convex.

Based on Theorem 2, we prove:

Theorem 3. (Chen-F.-Xiang) Admissible solutions are
unique (and exist, by Thm. 1).

Corollary. (Chen-F.-Xiang) Regular reflections solutions
with convex shocks are unique (and exist by Thms. 1, 2).



Outline of proof of uniqueness

By Th. 1, when θw → π
2
−, admissible solutions converge to

normal reflection. Also we have uniform estimates for
admissible solutions. Then use the method of continuity:

Suppose ϕ, ϕ̂ are two admissible solutions for some
θ∗w ∈ (θdw,

π
2
). Then it is sufficient to:

1. Construct continuous in C1 families θw 7→ ϕ(θw),
θw 7→ ϕ̂(θw) for θw ∈ [θ∗w,

π
2
), with ϕ(θ∗w) = ϕ, ϕ̂(θ∗w) = ϕ̂,

2. Show ”local uniqueness”: if two admissible solutions for
same θw are close in C1, then they are equal.

Both are achieved if we can linearize FBP at an admissible
solution, and linearization is ”good” so that we can construct
solutions for close wedge angles by Implicit Function Theorem.



Outline of proof of uniqueness

Rigorously, cannot use linearization for supersonic reflections:
elliptic degeneracy near sonic arc requires very detail control of
D2ϕ on sonic arc P1P4 to show well-posedness of linearization.
We do not have this control at one point: P1, where shock
meets sonic arc.

Then we use a ”nonlinear version of linearization”: apply
degree theory with ”small” iteration set, consisting of functions
close to the background solution (in appropriate norm). To
apply degree theory, we need to show (in particular) that fixed
point of iteration map cannot occur on the boundary of the
iteration set. This is done using local uniqueness theorem.

We use convexity of shock for proof of local uniqueness
theorem.



Proof of uniqueness: Role of convexity (heuristic)
When formally linearize FBP, variations of shock locations
introduce an additional zero-order term in the oblique
boundary condition derived from RH condition
ρDϕ · ν = ρ1Dϕ1 · ν. This term has the ”correct” sign if
shock is convex:

Formal linerization of RH conditions: shock is η = f(ξ) with
Ω ⊂ {η < f(ξ)} after rotating coordinates. Then RH:

ϕε(ξ, f ε(ξ)) = ϕ1(ξ, f
ε(ξ));

(

(ρ(|Dϕε|2, ϕε)Dϕε − ρ1Dϕ1) · (Dϕ1 −Dϕε)
)

(ξ, f ε(ξ)) = 0,

where we use that ν = Dϕ1−Dϕε

|Dϕ1−Dϕε|
. Here ϕε = ϕ+ εδϕ+ . . . ,

same for f ε. Taking d
dε

at ε = 0 in 1st condition and using
∂ν(ϕ1 − ϕ) > 0 and on shock, so ∂η(ϕ1 − ϕ) > 0:

δf =
1

∂η(ϕ1 − ϕ)
δϕ.



Now take d
dε

at ε = 0 in 2nd RH condition

(

(ρ(|Dϕε|2, ϕε)Dϕε − ρ1Dϕ1) · (Dϕ1 −Dϕε)
)

(ξ, f ε(ξ)) = 0,

Get two terms. First, linearization of oblique condition:

d

dε

[(

(ρ(|Dϕε|2, ϕε)Dϕε − ρ1Dϕ1) · (Dϕ1 −Dϕε)
)]

ε=0
(ξ, f(ξ))

= a∂νδϕ+ b∂τδϕ+ cδϕ, where a(ξ) ≥ λ > 0, c(ξ) ≤ −λ < 0

Second term comes from the perturbation of shock location:

∂η

[(

(ρ(|Dϕ|2, ϕ)Dϕ− ρ1Dϕ1) · (Dϕ1 −Dϕ)
)]

δf

= A(ϕ1 − ϕ)ττδf =
A

(ϕ1 − ϕ)η
(ϕ1 − ϕ)ττδϕ,

where A > 0. Convexity of shock is equivalent to
(ϕ1 − ϕ)ττ < 0, and then the coefficient of δϕ has ”correct”
sign.



Outline of proof of convexity

Function φ = ϕ− ϕ1 satisfies equation

(c2 − ϕ2
ξ)φξξ − 2ϕξϕηφξη + (c2 − ϕ2

η)φηη = 0,

where c = c(|Dϕ|2, ϕ) is the speed of sound, c2 = ργ−1.
Equation is elliptic in Ω. φ = 0 on Γshock = P1P2 (resp. on
P0P2 for subsonic reflections). Also, φ < 0 in Ω, which means
φττ > 0 on ”strictly convex” parts of shock, and φττ < 0 on
parts of shock which are strictly convex in opposite direction.

Let e ∈ R
2, e 6= 0. Then v = φe satisfies equation Lv = 0 in

Ω, where L is a linear elliptic 2nd order operator without zero
order terms. From this and Rankine-Hugoniot conditions
obtain, using maximum principles and Hopf’s lemma:



Property 1
For e ∈ R

2 such that e · νsh < 0 on Γshock, where νsh is
interior unit normal:

If φe has a local minimum relative to Ω at P ∈ Γshock, then
φττ (P ) > 0.

If φe has a local maximum relative to Ω at P ∈ Γshock, then
φττ (P ) < 0.

Condition e ·νsh < 0 on Γshock holds for any e ∈ Con(~eη, ~eS1
)



We choose and fix e = νw, where νw is the interior (for Ω)
unit normal on Γwedge = P3P4 (resp. Γwedge = P0P3 in the
subsonic case). It satisfies: νw ∈ Con(~eη, ~eS1

).

Function v = φνw
satisfies oblique derivative condition on

Γsym = P2P3; ∂ν(ϕ− ϕ2) = 0 on Γwedge, and D(ϕ− ϕ2) = 0
on Γsonic = P1P4 (resp. at P0 in the subsonic case). Also φe is
not constant in Ω.

From this, using that ∂νw
(ϕ− ϕ2) ≤ 0 in Ω, obtain: φνw

cannot attain its local minimum (relative to Ω) on
∂Ω \ (Γ0

shock ∪ {P2}).



Convexity of Γshock is proved by a non-local argument.

Technical tool: minimal (resp. maximal) chains.

Minimal chain {Br(C
i)}ki=0 of (small) radius r > 0 is:

1) C0 ∈ Ω
2) Ci+1 ∈ Br(Ci) ∩ Ω with φνw(C

i+1) = min
Br(Ci)∩Ω

φνw for

i = 1, . . . , k.
3) Endpoint: φνw(C

k) = min
Br(Ck)∩Ω

φνw .

For any C0 ∈ Ω which is not a local minimum (resp. maximum)
and small r > 0, minimal (resp. maximal) chain exists (for some
finite k ≥ 1), and ∪k

i=0Br(C
i) ∩ Ω is connected using that angles

are < π at corners of Ω. Also, for sufficiently small r depending on
various parameters, minimal/maximal chains do not intersect,
using regularity ‖φ‖C1,α(Ω) ≤ C.

Endpoint Ck is minimum (resp. maximum) of φνw over

∪k
i=0Br(Ci) ∩Ω, and k ≥ 1, thus Ck ∈ ∂Ω by strong maximum

principle. From properties φνw above: for any minimal chain:
Ck ∈ Γ0

shock ∪ {P2}.



Property 2.
If A,B ∈ Γshock and νsh(A) = νsh(B), with AB · ν(A) > 0, then
φνw(A) > φνw(B)

Note: on picture, A lies on ”convex” part of Γshock, and B lies on
”non-convex” part of Γshock. This can be used in the argument:
minimal chain ends in A, and we further reduce φνw if we find such
B on a ”non-convex” part of Γshock, then B is not a point of local
minimum of φνw , can start a minimal chain from B. After several
steps there is no place for endpoint of chain, a contradiction.



Steps of proof of convexity of Γshock

Suppose there exists P ∈ Γ0
shock with φττ (P ) < 0 (”wrong

direction of convexity”). Recall φ = ϕ− ϕ1.

Let Q1Q2 be the maximal interval on Γshock with φττ < 0 and
P ∈ Q1Q2. Then Q1Q2 ⊂ (Γshock)

0, by monotonicity cone of φ.
Let C ∈ Q1Q2 be such that φνw(C) = minQ1Q2

φνw .

By Property 1, C is not a point of local minimum of φνw relative
to Ω. Then there exists a minimal chain (with r small) starting at
C, with endpoint at C1 ∈ Γ0

shock ∪ {P2}. Can show C1 6= P2.



Then φνw(C1) < φνw(C), and φνw has a local minimum at C1.
By Property 1, φττ (C1) > 0, i.e. C1 is on ”convex” part of shock.

A contradiction would be obtained, if we show, by Property 2,
existence D on CC1 with φνw(D) = minCC1

φνw < φνw(C1) and
φττ (D) ≤ 0. Then there exists a minimal chain from D, it must
end at E ∈ CC1 and φνw(E) < φνw(D), which contradicts the
definition of D.

However, to use Property 2, we have to control the directions of ν
on Γshock. This requires extra steps.



We show maxCC1
φνw > φνw(C). Then there exists A ∈ (CC1)

0

such that φνw(A) = maxCC1
φνw . We show: A is a local

maximum of φνw relative to Ω, and ν(A) 6= ν(P ) for all P in
CC1 \ A. We can control directions of ν on subintervals AC and
AC1.

We show, using Property 2, that there exists C2 on AC1 with
φνw(C2) = minAC1

φνw < φνw(C1) and φττ (C2) ≤ 0.

Then there exists a minimal chain from C2; its endpoint C3 must
be on CC1 and φνw(C3) < φνw(C2). It follows that C3 ∈ AC.



Now we show, using Property 2, that there exists C4 on AC3 with
φνw(C4) = minAC3

φνw < φνw(C3) and φττ (C4) ≤ 0.

Then there exists a minimal chain from C4; its endpoint C5 must
be on C2C3 and φνw(C5) < φνw(C4). It follows that C5 ∈ AC2.
But then

φνw(C5) < φνw(C4) < φνw(C3) < φνw(C2) = min
AC1

φνw ,

a contradiction.



Open problems
1) Prove existence of regular reflection solutions for Euler
system. One of difficulties is in vorticity estimates, noticed by
D. Serre for isentropic Euler system: vorticity is not in L2(Ω).
Singularities are expected near the tip of wedge. Thus one has
to work in the low regularity framework: velocity is
discontinuous (but subsonic) near tip of wedge. On the
positive side, this may improve stability of solutions: For
potential flow, regular reflection solution does not exist for
non-symmetric perturbations of the incoming flow (J. Hu,
2018) because velocity cannot be subsonic and discontinuous
in case of potential flow. For Euler system, existence for
non-symmetric perturbations can be expected.

2) Uniqueness/nonuniqueness in various classes of solutions.
For example, for reflection of oblique shock by a flat wall, in
the class of self-similar solutions for Euler system, etc.

3) Mach reflection: develop apriori estimates.


