
Examiners’ Report:

Final Honour School of Mathematics Part A

Michaelmas Term 2022

November 30, 2022

Part I

A. STATISTICS

• Numbers and percentages in each class.
See Table 1.

Table 1: Numbers in each class
Range Numbers Percentages %

2022 2021 2020 2019 2018 2022 2021 2020 2019 2018

70–100 59 53 43 57 57 36.65 37.32 32.58 35.19 35.62
60–69 71 57 65 71 69 44.1 40.14 49.24 43.83 43.12
50–59 22 29 21 27 22 13.66 20.42 15.91 16.67 13.75
40–49 6 2 3 5 9 3.73 1.41 2.27 3.09 5.62
30–39 2 0 0 1 3 1.24 0 0 0.62 1.88
0–29 1 1 0 1 0 0.62 0.7 0 0.62 0

Total 161 142 132 162 160 100 100 100 100 100

• Numbers of vivas and effects of vivas on classes of result.
Not applicable.

• Marking of scripts.
All scripts were single marked according to a pre-agreed marking scheme which was
strictly adhered to. The raw marks for paper A2 are out of 100, and for the other
papers out of 50. For details of the extensive checking process, see Part II, Section A.

• Numbers taking each paper.
All 161 candidates are required to offer the core papers A0, A1, A2 and ASO, and five
of the optional papers A3-A11. Eight candidates took six long options. Statistics for
these papers are shown in Table 2 on page 2.
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Table 2: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

A0 161 33.59 9.7 66.67 13.79
A1 161 30.21 7.76 65.96 11.02
A2 161 57.91 17.36 66.36 10.49
A3 89 27.61 8.78 64.34 13.2
A4 136 32.43 8.8 67.3 11.67
A5 106 28.07 9.34 66.63 10.71
A6 88 34.26 7.6 65.6 10.69
A7 61 35.44 9.68 68.9 13
A8 145 32.21 7.77 65.59 11.18
A9 68 27.68 7.61 66.37 10.68
A10 36 37.75 8.24 68.25 15.65
A11 74 33.65 8.15 66.42 11.89
ASO 161 32.14 8.76 66.07 12.82

B. New examining methods and procedures

Exams returned to their in-person format following two years of online exams during the
pandemic.

C. Changes in examining methods and procedures currently under discus-
sion or contemplated for the future

None.

D. Notice of examination conventions for candidates

The first notice to candidates was issued on 30th March 2022 and the second notice on the
9th June 2022.

These can be found at https://www.maths.ox.ac.uk/members/students/undergraduate-
courses/ba-master-mathematics/examinations-assessments/examination-20, and contain
details of the examinations and assessments. The course handbook contains the link to the
full examination conventions and all candidates are issued with this at induction in their first
year. All notices and examination conventions are on-line at
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-
assessments/examination-conventions.
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Part II

A. General Comments on the Examination
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final marks, without which the process could not operate.

• Clare Sheppard for her help and support, together with the Academic Administration
Team, with marks entry, script checking, and much vital behind-the-scenes work.

• The assessors who set their questions promptly, provided clear model solutions, took care
with checking and marking them, and met their deadlines, thus making the examiners’
jobs that much easier.

• Several members of the Faculty who agreed to help the committee in the work of checking
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• The internal examiners and assessors would like to thank the external examiners, Prof
Neil Strickland and Prof John Billingham, for helpful feedback and much hard work
throughout the year, and for the important work they did in Oxford in examining
scripts and contributing to the decisions of the committee.

Timetable

The examinations began on Monday 13th June and ended on Friday 24th June.

Mitigating Circumstances Notices to Examiners

A subset of the examiners (the ‘Mitigating Circumstances Panel’) attended a pre-board meet-
ing to band the seriousness of the individual notices to examiners. The outcome of this meeting
was relayed to the Examiners at the final exam board, who gave careful regard to each case,
scrutinised the relevant candidates’ marks and agreed actions as appropriate. See Section E
for further details.

Setting and checking of papers and marks processing

As is usual practice, questions for the core papers A0, A1 and A2, were set by the examiners
and also marked by them with the assistance of assessors (with the exception that Dr Richard
Earl set three of the questions for A2). The papers A3-A11, as well as each individual
question on ASO, were set and marked by the course lecturers/assessors. The setters produced
model answers and marking schemes led by instructions from Teaching Committee in order
to minimize the need for recalibration.

The internal examiners met in December to consider the questions for Michaelmas Term
courses (A0, A1, A2 and A11). The course lecturers for the core papers were invited to
comment on the notation used and more generally on the appropriateness of the questions.
Corrections and modifications were agreed by the internal examiners and the revised questions
were sent to the external examiners.
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In a second meeting the internal examiners discussed the comments of the external examiners
and made further adjustments before finalising the questions. The same cycle was repeated in
Hilary term for the Hilary term long option courses and at the end of Hilary and beginning of
Trinity term for the short option courses. Papers A8 and A9 are prepared by the Department
of Statistics and jointly considered in Trinity term. Before questions were submitted to the
Examination Schools, setters were required to sign off a camera-ready copy of their questions.

The whole process of setting and checking the papers was managed digitally on SharePoint.
Examiners adopted specific and detailed conventions to help with version checking and record
keeping. This has worked very well.

Examination scripts were collected by the markers from Exam Schools or delivered to the
Mathematical Institute for collection by the markers and returned there after marking. A
team of graduate checkers under the supervision of Clare Sheppard and Elle Styler sorted
all the scripts for each paper, cross-checking against the mark scheme to spot any unmarked
questions or part of questions, addition errors or wrongly recorded marks. Also sub-totals for
each part were checked against the marks scheme, noting any incorrect addition.

Determination of University Standardised Marks

The examiners followed the standard procedure for converting raw marks to University Stan-
dardized Marks (USM). The raw marks are totals of marks on each question, the USMs are
statements of the quality of marks on a standard scale. The Part A examination is not clas-
sified but notionally 70 corresponds to ‘first class’, 50 to ‘second class’ and 40 to ‘third class’.
In order to map the raw marks to USMs in a way that respects the qualitative descriptors of
each class the standard procedure has been to use a piecewise linear map. It starts from the
assumption that the majority of scripts for a paper will fall in the USM range 57-72, which
is just below the II(i)/II(ii) borderline and just above the I/II(i) borderline respectively. In
this range the map is taken to have a constant gradient and is determined by the corners C1

and C2, which encode the raw marks corresponding to a USM of 72 and 57 respectively. The
guidance requires that the examiners should use the entire range of USMs. Our procedure
interpolates the map linearly from C1 to (M, 100) where M is the maximum possible raw
mark. In order to allow for judging the position of the II(i)/III borderline on each paper,
which corresponds to a USM of 40, the map is interpolated linearly between C3 and C2 and
then again between (0, 0) and C3. Thus, the conversion of raw marks to USMs is fixed by
the choice of the three corners C1, C2 and C3. While the default y-values for these corners
were given above and are not on the class borderlines, the examiners may opt to change those
default values, e.g., to avoid distorting marks around class boundaries. The final choice of
the scaling parameters is made by the examiners, guided by the advice from the Teaching
Committee, considering the distribution of the raw marks and examining individuals on each
paper around the borderlines.

The final resulting values of the parameters that the examiners chose are listed in Table 3.

Table 4 gives the resulting final rank and percentage of candidates with this overall average
USM (or greater).
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Table 3: Parameter Values
Paper C1 C2 C3

A0 (41.6,72) (22.1,57) (12.69,37)
A1 (35.8,72) (22.3,57) (12.81,37)
A2 (73,72) (35.5,57) (20.39,37)
A3 (35.2,72) (18.7,57) (10.74,37)
A4 (39.5,72) (21.1,57) (12.12,37)
A5 (38.8,72) (15.8,57) (9.076,51)
A6 (40,70) (25.7,57) (14.76,37)
A7 (42,70) (22.5,57) (12.92,37)
A8 (39,72) (24,57) (13.78,37)
A9 (32.8,72) (19.3,57) (11.08,37)
A10 (42,70) (31.6,57) (18.15,37)
A11 (41.2,72) (24.7,57) (14.18,37)
ASO (39.2,72) (22.7,57) (13.04,37)

Table 4: Rank and percentage of candidates with this overall
average USM (or greater)

Av USM Rank Candidates with this USM or above %

94.7 1 1 0.62
85 2 2 1.24

84.5 3 3 1.86
82.3 4 4 2.48
81.7 5 5 3.11
81.1 6 6 3.73
80.7 7 7 4.35
80.6 8 8 4.97
80.1 9 9 5.59
79.9 10 10 6.21
79.1 11 11 6.83
78.9 12 12 7.45
78.7 13 13 8.07
77.9 14 14 8.7
77.85 15 15 9.32
77.5 16 17 10.56
77.4 18 18 11.18
77.2 19 19 11.8
76.3 20 20 12.42
76 21 21 13.04

75.7 22 22 13.66
75.1 23 23 14.29
75 24 24 14.91

74.9 25 26 16.15
74.6 27 27 16.77
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Table 4: Rank and percentage of candidates with this overall
average USM (or greater) [continued]

Av USM Rank Candidates with this USM or above %

74.2 28 29 18.01
74 30 30 18.63

73.7 31 31 19.25
73.6 32 32 19.88
73.5 33 34 21.12
73.2 35 35 21.74
73.1 36 36 22.36
73 37 37 22.98

72.9 38 38 23.6
72.7 39 39 24.22
72.4 40 40 24.84
71.7 41 42 26.09
71.5 43 43 26.71
71.38 44 44 27.33
71.2 45 45 27.95
71.15 46 46 28.57
71.1 47 47 29.19
71 48 48 29.81

70.7 49 49 30.43
70.5 50 51 31.68
70.2 52 53 32.92
70.1 54 54 33.54
70 55 55 34.16

69.9 56 57 35.4
69.8 58 58 36.02
69.7 59 59 36.65
69.3 60 60 37.27
69.1 61 61 37.89
69 62 62 38.51

68.5 63 63 39.13
68.3 64 64 39.75
68.2 65 66 40.99
68.1 67 68 42.24
68 69 69 42.86

67.9 70 70 43.48
67.8 71 71 44.1
67.6 72 72 44.72
67.4 73 74 45.96
67.3 75 75 46.58
67.22 76 76 47.2
67.2 77 77 47.83
67.15 78 78 48.45
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Table 4: Rank and percentage of candidates with this overall
average USM (or greater) [continued]

Av USM Rank Candidates with this USM or above %

67.1 79 79 49.07
67 80 80 49.69

66.9 81 81 50.31
66.7 82 82 50.93
66.65 83 83 51.55
66.6 84 85 52.8
66.6 84 85 52.8
66.5 86 86 53.42
66.4 87 88 54.66
66.4 87 88 54.66
66.3 89 90 55.9
66.3 89 90 55.9
66 91 92 57.14
66 91 92 57.14

65.6 93 93 57.76
65.5 94 96 59.63
65.1 97 98 60.87
65 99 99 61.49

64.9 100 100 62.11
64.8 101 101 62.73
64.7 102 102 63.35
64.4 103 103 63.98
63.9 104 104 64.6
63.8 105 105 65.22
63.7 106 106 65.84
63.6 107 109 67.7
63.6 107 109 67.7
63.6 107 109 67.7
63.4 110 111 68.94
63.4 110 111 68.94
63.3 112 112 69.57
63.2 113 113 70.19
63 114 116 72.05

62.6 117 117 72.67
61.8 118 118 73.29
61.6 119 119 73.91
61.4 120 121 75.16
61.2 122 122 75.78
60.6 123 123 76.4
60.4 124 124 77.02
60.2 125 125 77.64
60 126 126 78.26
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Table 4: Rank and percentage of candidates with this overall
average USM (or greater) [continued]

Av USM Rank Candidates with this USM or above %

59.8 127 127 78.88
59.7 128 128 79.5
59.6 129 129 80.12
59.5 130 130 80.75
59.3 131 131 81.37
58.8 132 132 81.99
58.1 133 133 82.61
57.8 134 134 83.23
57.7 135 135 83.85
57.56 136 136 84.47
56.6 137 137 85.09
56.33 138 138 85.71
56.3 139 139 86.34
56.1 140 140 86.96
55.9 141 141 87.58
55.8 142 142 88.2
55.5 143 143 88.82
55.1 144 144 89.44
55 145 145 90.06

54.7 146 146 90.68
54.6 147 147 91.3
53.5 148 148 91.93
53.1 149 149 92.55
52.7 150 150 93.17
52.5 151 151 93.79
50.7 152 152 94.41
45.9 153 153 95.03
45.44 154 154 95.65
45.3 155 155 96.27
44.88 156 156 96.89
44.8 157 157 97.52
43.9 158 158 98.14
38.1 159 159 98.76
37.5 160 160 99.38
27.33 161 161 100

Recommendations for Next Year’s Examiners and Teaching Committee

The examiners were strongly in favour of having assessors present for an initial period in
the examinations. (The two typographical errors which caused some confusion in A10 and
A11 could have been immediately remedied had this been the case this year.) They also
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recommend paper checking procedures be reviewed, to ensure that someone has attempted in
advance the final version of each paper without solutions, rather than just checked the paper
and solutions through its various iterations. And further that Teaching Committee ensure
Examination Schools has up-to-date software for large fonts on its printers, to avoid any
repeat of the errors in printing these papers we unfortunately encountered this year. Finally
the Chairman of Examiners suggest that Teaching Committee requests IT support write code
which would allow one to immediately generate latex tables on examination data for inclusion
in these reports from the source database (at present all the data is transcribed by hand).
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B. Equality and Diversity issues and breakdown of the results by gender

Table 5, page 10 shows percentages of male and female candidates for each class of the degree.

Table 5: Breakdown of results by gender
Class Number

2022 2021 2020
Female Male Total Female Male Total Female Male Total

70–100 7 52 59 5 48 53 10 33 43
60–69 23 48 71 21 36 57 22 43 65
50–59 8 14 22 15 14 29 7 14 21
40–49 4 2 6 1 1 2 2 1 3
30–39 0 2 2 0 0 0 0 0 0
0–29 1 0 1 0 1 1 0 0 0

Total 43 118 161 42 100 142 41 91 132

Class Percentage

2022 2021 2020
Female Male Total Female Male Total Female Male Total

70–100 16.28 44.07 36.65 11.9 48 37.32 24.39 36.26 30.32
60–69 53.49 40.68 44.10 50 36 40.14 53.66 47.25 50.45
50–59 18.6 11.86 13.66 35.71 14 20.42 17.07 15.38 16.22
40–49 9.3 1.69 3.73 2.38 1 1.41 4.88 1.1 2.99
30–39 0 1.69 1.24 0 0 0 0 0 0
0–29 2.33 0 0.62 0 1 0.7 0 0 0

Total 100 100 100 100 100 100 100 100 100

C. Detailed numbers on candidates’ performance in each part of the exam

Individual question statistics for Mathematics candidates are shown in the tables below.

Paper A0: Linear Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.91 18.04 6.12 136.00 1
Q2 12.49 13.14 6.01 44.00 3
Q3 16.86 16.86 4.56 137.00 0
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Paper A1: Differential Equations 1

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.88 12.31 4.92 64.00 3
Q2 15.83 15.94 4.65 105.00 1
Q3 15.62 15.71 4.14 149.00 1

Paper A2: Metric Spaces and Complex Analysis

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.65 15.89 6.76 105.00 2
Q2 16.24 16.32 5.90 136.00 1
Q3 11.16 11.47 5.70 66.00 4
Q4 13.21 13.21 4.80 125.00 0
Q5 15.71 16.00 5.46 140.00 4
Q6 10.75 11.39 4.76 59.00 4

Paper A3: Rings and Modules

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.94 14.94 4.81 88.00 0
Q2 11.54 11.72 4.81 74.00 2
Q3 16.18 17.19 6.20 16.00 1

Paper A4: Integration

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.74 16.84 5.69 87.00 1
Q2 15.71 16.10 4.88 107.00 3
Q3 15.44 15.67 4.80 78.00 2

Paper A5: Topology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.27 14.27 5.07 37.00 0
Q2 15.32 15.32 5.45 100.00 0
Q3 12.09 12.20 5.54 75.00 1

Paper A6: Differential Equations 2

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.89 17.89 3.98 70.00 0
Q2 14.77 15.00 5.04 52.00 1
Q3 18.04 18.20 3.86 54.00 1
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Paper A7: Numerical Analysis

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.35 15.35 5.90 51.00 0
Q2 19.45 19.45 4.86 56.00 0
Q3 19.33 19.33 4.58 15.00 0

Paper A8: Probability

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.71 15.71 5.03 111.00 0
Q2 17.52 17.52 3.89 117.00 0
Q3 13.82 14.13 3.60 62.00 3

Paper A9: Statistics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 9.44 10.56 4.77 34.00 5
Q2 14.44 14.66 4.88 44.00 1
Q3 14.92 15.14 5.13 58.00 1

Paper A10: Fluids and Waves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.77 19.00 3.66 30.00 1
Q2 17.35 17.60 5.85 30.00 1
Q3 21.75 21.75 4.05 12.00 0

Paper A11: Quantum Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.19 16.19 4.85 72.00 0
Q2 17.81 17.81 4.68 70.00 0
Q3 11.86 12.83 5.24 6.00 1
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Paper ASO: Short Options

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.86 11.86 5.11 71.00 0
Q2 18.32 18.32 3.10 44.00 0
Q3 16.56 16.56 6.67 9.00 0
Q4 16.50 16.50 4.43 4.00 0
Q5 19.11 19.11 5.03 74.00 0
Q6 16.07 16.07 5.82 54.00 0
Q7 16.15 16.15 4.33 27.00 0
Q8 11.33 11.33 7.09 3.00 0
Q9 15.53 15.53 5.42 36.00 0

D. Comments on papers and on individual questions

The following comments were submitted by the assessors.

Core Papers

A0: Algebra 1

Question 1. Common mistakes: (a)(i): Show spanning or linearly-independent, but not
both. (a)(ii): Prove the existence of T , but not its linearity. (a)(iii): Fail to prove that
the bottom right block coincides with T in basis q(B2), or do so using incorrect reasoning.
(a)(iv): Take for granted that every matrix is upper triangularizable in a basis. (b)(i): Argue
that au + bv + ciu + div = 0 ⇒ au + bv = ciu + div = 0 by taking “real” and “imaginary”
parts. This is not a well-defined operation on V ! Prove spanning or linearly-independent,
but not both. Argue that u, v, iu, iv is spanning (over R) since a subset (namely, {u, v})
is spanning (over C). (b)(ii): Incorrectly calculate action of T on basis. Reverse rows and
columns. (b)(iii): Incorrectly calculate characteristic polynomial (if errors were related to
errors in 1bii, partial credit was given). Correctly calculate characteristic polynomial, but
do not explain deduction of minimal polynomial. (b)(iv): Incorrectly assert that there is no
JNF (since minimal polynomial has no real roots). Correctly determine diagonal entries, but
miscalculate block sizes from minimal polynomial. Correctly deduce JNF, but do not provide
justification.

Question 2 was the least popular question on this paper. Part (a) was done very well by
most people who attempted it; however, many people lost marks in (a)(ii) if they failed to
give a counterexample. Part (b) was quite difficult, although (ii), (iii) and (iv) were amenable
to a direct calculation with no theory being involved. It was pleasing to see several students
to nevertheless obtain full marks for Question 2.

Question 3 was very popular, and done relatively well by most students. Part (a) was
straightforward, although part (a)(iii) required careful thought in order to arrive at the correct
answer (strictly lower triangular matrices, not upper). Parts (b)(i) and (b)(ii) were done very
well indeed, but part (b)(iii) was more difficult. It was nice to see that several students found
the following alternative elegant solution: by rank-nullity, it is enough to prove that γ is
injective; now if γ(v) = 0 then 0 = 〈γ(v), v〉 = 〈α∗v, α∗v〉+ 〈βv, βv〉 = 0, so because 〈−,−〉 is
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positive definite this gives α∗v = βv = 0. But then v ∈ kerβ = imα, and v ∈ kerα∗, so v = 0
by part (ii).

A1: Differential Equations 1

Question 1 was the least popular among the questions and was found to be reasonably
challenging. Most of the candidates got the bookwork with no problems. Some forgot to give
any justification for their answers, e.g., in (a)(iii) when deducing the series representation
for the solution. Part (a)(iv) was done poorly with only few students deriving the IVP for
z (and even then often forgetting about the boundary condition, or to argue why this IVP
has a unique solution). Roughly a third of the students failed to produce any attempt at
the counterexample in (b)(i) and a third gave an example which did not satisfy the suitable
Lipschitz continuity assumptions, with the remaining third usually giving one among many
simple examples (e.g., jjy(x) + xjj). Many candidates were confused with (b)(ii) and failed
to use triangular inequality and exploit the Lipschitz property in two variables. Part (b)(iii)
proved challenging with most candidates either not having time to attempt it, or stopping
halfway through.

Question 2 was attempted by a large number of candidates. Some marks were lost in the
bookwork part (a) by simply stating the characteristic equations without giving any sort of
derivation. Part (b) was generally done well. The quality of sketches of the helical strip
surface in (b)(iii) varied widely, but the marks were given as long as the idea was right. Part
(c) produced a wide variety of approaches; the lack of a defined P and Q clearly caused
conceptual issues, so that many candidates did not seem to know how to begin. The problem
is best solved by drawing the characteristics and data curve, and then recognising a right-
angled triangle that defines the Cauchy data boundary. Candidates who saw this geometric
connection were able to quickly obtain the desired solution.

Question 3 was attempted by most candidates. Part (a)(iii) tended to be hit or miss, with
many candidates leaving it blank; full marks required a valid argument about uniqueness of
the equations away from critical points, which was best done by appropriately invoking Picard
Õ’s theorem for the ODE dy/dx = Y/X in a neighbourhood of a non-critical point. Part (b)
was generally well done, with just a few small errors appearing, mostly due to small algebraic
mistakes. Part (c) was again hit or miss. As the question hinted at making an argument
about symmetry, vague statements about symmetry were not awarded marks; rather, clear
arguments demonstrating how the (u, v) system is symmetric, and how the symmetry implies
closed trajectories, were required to earn the marks.

A2: Metric Spaces and Complex Analysis

Question 1. This was a popular question and generally done very well, with many candidates
scoring high marks. Almost everyone had little trouble with the bookwork in (a), and most
recognised that (c) was a variation of a question on the problem sheets in which the real
interval [0; 1] is replaced by the finite set {0, 1}. Some had trouble correctly interpreting
the statement in (b)(i), but most candidates were able to find a counterexample for (b)(ii)
(related to material in Analysis II)

Question 2 seems to have gone very well in general. Part (a) was mainly bookwork and most
candidates received full marks; the only exception was the last part where some did not an

14



example of a contraction without fixed points. Part (b) (i) was the most difficult part of this
question. Nevertheless, a majority of candidates was able to see that the sequence (xn)n∈N
of fixed points of (1 − 1

n)T had to be considered (following the hint). The existence of a
fixed point of T now follows from a convergence argument which not everyone found. Part
(b)(ii) was answered correctly by the great majority of candidates; part (b)(iii) caused more
difficulty than what was perhaps expected with many simply asserting an affirmative answer,
even though counterexamples are fairly easy (though not trivial) to spot. Part (b)(iv) again
went well; the main reason for loss of marks was candidates simply asserting an answer. Part
(c) seems to have been found fairly easy by most candidates. Almost all proved accurately
that the topology on N induced by d is discrete and that (N, d) is complete. A majority
of candidates had the right idea regarding the proof that (N, δ) is discrete but this caused
some technical difficulty. The great majority gave correct examples of non-convergent Cauchy
sequences in (N, δ) but not all of them were able to justify this adequately. Surprisingly few
spotted that (N, δ) is isomorphic to ( 1

n : n ∈ N, d), where d is the Euclidean metric.

Question 3. Part (a) was bookwork and was answered well by most people. I deducted
marks for answers that were not as detailed as those in the solutions, and of course for the
minority of students that wrote down the formula for the coefficients incorrectly. In (b)(ii)
the vast majority of students correctly understood that the sequence pn was the truncated
Taylor expansion, for which I already awarded 1 mark even if presented without justification.
The remaining marks were to be gained by justifying why convergence is uniform on D(0, r),
r < 1. I gave a lot of partial credit to students who made estimation arguments that did not
reach the level of detail in the proposed solution, e.g. many said that convergence is uniform
“by the Weierstrass M -test” but without writing down the estimate for the coefficients: most
of these students got 3/4. I was a bit stricter with students who did not write estimates but
just argued based on the radius of convergence (though a few got full marks, provided the
result used was stated clearly and correctly). In (b)(ii), and in further questions that required
a counterexample — namely (c)(i) and (c)(iii) — my rule was: 0 marks for no or incorrect
counterexample (including answers such as “No.”, or “No, because the same argument of the
previous point does not work”, even if correct), 1 mark for a correct counterexample with
no or incorrect justification, and further marks for attempts at justifying that the proposed
function violates the required property. In (b)(ii) and in (c)(iii) a common misconception
was that the sequence of polynomials/rational functions that approximate f had to be the
truncated Taylor/Laurent expansion, which is not stated in the question; in fact, one has
to exclude that more general such sequences (with varying coefficients of low order) must
always exist. In (b)(ii) most students guessed a correct counterexample and many intuited
that the principle at play is that a sequence of bounded (even if not uniformly bounded)
functions may not uniformly approximate an unbounded one, though few obtained the full
3 marks for a correct justification. In (c)(i), most students correctly guessed f(x) = 1/x
and most of these got the full marks by deriving the contradiction 0 = 2πi, although a few
provided an example that failed to be holomorphic on the punctured plane (writing, e.g.
“f(x) = 1/(1 − x) and argue as in the previous point”); I did not award any marks to such
answers, as they completely missed the point of the question. In (c)(ii) a majority of students
correctly wrote down the correct sequence of approximants, although a few wrote things such
as qn(x) =

∑n
m=−∞ cmz

m which is not a rational function, for which I did not award any
marks. Here I was a little more demanding for precise justifications compared to (b)(i): this is
because I consider uniform convergence of the Laurent series within the two radii to be a less
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standard result than that of the Taylor series (I noticed that uniformity is briefly mentioned
in a proof in the lecture notes, but not in the statement of the theorem). Not many candidates
understood that they had to separately estimate the principal part to use the M -test. (c)(iii)
was the most difficult question, and I awarded partial credit to many arguments that were
not very convincing but caught the spirit of the problem.

Question 4. Most candidates correctly answered the question (a). Question (a) involves a
fundamental question regarding the holomorphic branch of the logarithmic function. However,
it is crucially used to answer the question (b)(i). It turns out that question (b)(ii) was the
most challenging problem. Only a few candidates provided the correct answer. For questions
(b)(iii) and (c)(i), some candidates made (small) computation mistakes in the application of
Taylor/ Laurent expansion. Mostly this mistake was made for the regular part of the Laurent
expansion. Therefore many candidates got the marks for question (c)(ii). In summary, I think
the subproblems of Question 4 are connected very nicely. The candidates who noticed this
connection provided more smooth answers.

Question 5. Part (a): This question was attempted by a large number of students, with
many excellent answers.

Many otherwise good proofs had issues with computing the residue. In particular finding
(−1)−2/3 caused difficulties, even for candidates that had given a correct definition of a
branch of z1/3 earlier in their answer.

Other common errors included mistaking 1/(z + 1)2 for 1/(z2 + 1), confusion about the
cube root symbol 3

√
z (which means z1/3 rather than z3/2) and mistakenly assuming that the

integrals along the contours either side of the branch cut took equal values.

Part (b): This question was again attempted by a large number of students, with many good
answers and different approaches. A key point was that to gain full marks, all steps in the
calculation needed to be carefully justified.

To evaluate the first integral, many candidates successfully set up the problem as a contour
integral. Some otherwise good answers lost marks here by not taking care of constant factors;
in particular the prefactor of z2 in the denominator was often forgotten later in the calculation
(i.e., 1

(az2+bz+c)
= 1

a(z−z0)(z−z1) 6=
1

(z−z0)(z−z1) , where the roots of the denominator are given

by z0, z1).

For the second part, many good attempts were made following the line of reasoning that uses
the previous integral, i.e., expanding both sides in powers of α (with correct justification). Two
common alternative approaches were to calculate the integral on the left-hand-side directly
using residue calculus, or to prove the result by induction.

Question 6. A sizeable proportion of candidates attempted this question, but it was not
done that well and few scored high marks. The vast majority did not get beyond stating the
theorem in (c). Most did well on the early parts of (a), but few gave convincing arguments
for (a)(iii). Part (b) was on the whole done quite well.
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Long Options

A3: Rings and Modules

Question 1 was attempted by almost all candidates. In (a)(ii) the most common mistake
was to say (3 + 2

√
2) = (1 +

√
2)2 and so it factors and is not irreducible, rather than noting

that it is a unit and so not irreducible. (a)(iii) could be done by directly applying Krull’s
Theorem, or a longer answer could be given by repeating the lecture proof that a PID has the
ACCP and then applying (a)(i). (a)(iv) was quite well done with the most common mistake
to confuse maximal proper principal ideal and maximal proper ideal. (b)(i) was fairly well
done. The idea in (b)(ii) was that the previous part could be used. The most common error
was to claim that Z[α+ β] = Z[α] +Z[β]. For (b)(iii) the idea was to note that if α ∈ Z then√
α ∈ Z, so if α is irreducible then α ≈

√
α. This means that either α is a unit or α = 0.

This last case was missed by almost everyone, but allowed for the use of (a)(iv) coupled with
the observation that Z is not a field.

Question 2 was attempted by the vast majority of candidates. It was found harder than
intended, but it did give a very good spread to marks which made it easier to distinguish
candidates. A common mistake in parts (b) and (c) was to show the isomorphisms were linear
isomorphisms rather than ring isomorphisms. While (c)(i) was natural for the structure of
the question, solutions to this seemed to be uncorrelated with solutions to other parts of
the question. Part (d)(i) as worded admitted taking p = 0 though that was not what was
intended. Full marks were given for a careful proof of this, though that made the result less
useful for (d)(ii). (d)(ii) was found to be very difficult.

Question 3 was attempted by very few candidates, but was certainly the easiest question on
the paper so those who were prepared to work with modules were rewarded for their efforts.
The most common mistake was to claim for (a)(iii) that the Uniqueness Theorem applied, but
the point of the question was that it does not for non-commutative rings such as R = M2(F).
Here it was best to note that Rn is F-linearly isomorphic to F4n and so if Rn is R-linearly
isomorphic to Rm then 4n = 4m by the Dimension Theorem for vector spaces.

A4: Integration

Question 1. This was a popular question, and part (a) was generally well done. As a note for
future students, in part (a)(iv) most candidates considered Fn = ∪r≥nEr and applied (iii) as
intended - however marks where often lost for failing to explicitly check that the hypotheses
of (iii) apply (particularly m(F1) < ∞). In (a)(iii) many students chose to prove the lemma
that if E1 ⊂ E2 ⊂ . . . are measurable then m(

⋃
nEn) =

∑
nm(En) en-route to the result; this

is perfectly valid (though longer than finding a way of using countable additivity directly).
Regardless of the approach, it would have been advisable to clearly indicate in answers where
the important hypothesis m(F1) <∞ is used, though this was not penalised this year unless
it actually led to an error.

Part (b) discriminated well between candidates: (i) was well answered by a reasonable number
of candidates demonstrating strong command of the material, but it also saw quite a few
attempts in the style of a plausibility argument and also featured a number of false claims
such as measurable functions on closed and bounded intervals being bounded. In (ii) a
considerable number of candidates had the idea to look at E = ∩n∪r≥n {x : |fr(x)|/ar > 1/r}
which has measure 0 by (a)(iv), but this was often not correctly related to {x : fn(x) 6→ 0}
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(often these sets where claimed to be equal, whereas if x /∈ E, then fn(x) → 0). A common
error was to attempt to take limits in m({x : |fn(x)|/an > 1/n}) < 2−n either inside the set,
or in the 2−n, without any form of justification (these arguments where invariably invalid).

Question 2. The bookwork in (a) was very well done. In (b), (i) was well done, though
quite a few candidates where a bit too caviller in computing

∫∞
0 e−xydx without any comment

about how to handle the ∞: expressions like [ e
−xy

y ]∞0 are inadvisable in this sort of course,
and certainly the first time something like this appears it’s a chance to show knowledge of
how these integrals can be computed using the baby monotone convergence theorem. Most
candidates had looked ahead at (ii) and realised they were aiming for log a — though a few
ended up bounding the integral in a somewhat complicated fashion. (ii) was invariably very
well done, but (iii) caused more difficulties. Many candidates found the argument published
in the solutions (or the a slightly simpler version added to the solutions); another successful
though involved method was to explicitly calculate

∫ 1
0

∫∞
1 |g|dxdy by working out when g is

positive and negative. However, quite a number of candidates where hampered by calculation
slips (sign errors, or inaccurate integrals) which had the effect of destroying the problem (and
some candidates failed to recall that for g to be integrable, the integral of |g| must be finite).

Part (c) was very mixed; a few candidates found the very short solution using Fubini’s the-
orem. A number of other candidates had this idea, but wrote it down in a sloppy fashion,
which didn’t convey understanding (often expressions like

∫ 1
0 f(x)dx −

∫ 1
0 f(y)dx < ∞ — it

is a not a good idea to be writing
∫
< ∞ to mean integrable unless one is working with a

non-negative function). There was also a large variety of incorrect counter examples on offer.

Question 3. Question (a) was typically well done, though some candidates in (iv) didn’t
argue from the definitions introduced in (ii) and (iii) and relied on linearity of the integral;
a much harder result. (b) was also broadly well done. I’d advise future candidates to be
very explicit in how they use the substitution theorem in questions like (b)(ii) to show their
knowledge of the material of the course, and avoid answering this in a calculus style fashion.
Part (c) proved challenging, and featured various incorrect applications of the DCT. Not
many candidates realised they could take limits (a.e.) to obtain |f | ≤ g and hence deduce
integrability of f from that of g. Those candidates that spotted that Fatou’s lemma could be
used (the statement is a kind of variation of the DCT so it’s natural to consider how the proof
of the DCT goes) typically solved part (i). Very few candidates spotted that one can apply
the result of (i) together with integrability to obtain (ii) (considering |fn|+ |f | ≤ gn + |f |).

A5: Topology

Question 1 was chosen by the least number of students, possibly because they saw the
drawings of Möbius bands and Klein bottles. Indeed, the question asking to show that the
connected sum of two Möbius bands is homeomorphic to a twice punctured Klein bottle was
skipped by many. The last question, about recognising open subsets of Hausdorff spaces was
difficult, and only a very small percentage of students got it right.

Question 2 was chosen by most. In (a)(ii)(α), some reproved the Heine-Borel theorem,
which was not the intention of the question. In (b)(ii), almost nobody knew how to properly
prove that a convex polygon is homeomorphic to a disc. I ended up giving full points for less
then perfect answers.

Question 3 was done mostly fine, with the notable exception of (b)(iii), which most students
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found very hard. Indeed, arguing that the map [0, b)→ S1 : x 7→ e2πi is a quotient map was
beyond the ability of most students. The last question, about identifying two models of RP 2

was difficult, but of the expected level of difficulty.

A6: Differential Equations 2

Question 1. 1(a) was overall very well done, with some difficulties to derive expressions for
the adjoint boundary conditions. For 1(b), most students did well, and most errors came
from calculations errors. In 1(c), arguments were not always sufficiently solid. 1(d) was the
most challenging question, especially the first part of the question, but also in finding the
eigenvalues for the second part of the problem.

Question 2. Question 2 involves the longest calculations, and students sometimes failed to
reach the last parts of the question. 2(a) went relatively well, even if some students failed
to give satisfactory explanations. 2(b) went very well, except for some minor calculation
mistakes. A same observation can be made for 2(c). 2(d) was the most challenging part, and
several students got lost in calculations, or did not consider it.

Question 3. 3(a) was bookwork and went well, even if explanations were not always clearly
exposed. 3(b) went relatively well, but some students struggled in finding the regime where
the solution breaks done. Question 3(c) went relatively well. The students clearly had a
good understanding overall, but the succession of steps to arrive at the solution, and the
explanation between steps were sometimes not satisfactory.

A7: Numerical Analysis

This seems to have been a reasonably successful exam with a spread of marks including some
very high ones. On all three questions there was at least one candidate that achieved full
marks, but none that did overall.

Question 1 on LU and QR factorisation was attampted by many candidates. Several were
unable to carry out a simple example of Gauss Elimination with partial pivoting in practice
even though they were able to explain correctly what partial pivoting was. It was dissappoint-
ing to see several candidates plough on with simple GE without pivoting even though it was
explicitly stated in the question that such an approach would secure no credit! QR factori-
sation of a square matrix using Given rotations also challenged some candidates with many
not being careful enough to note if there was any overwriting of created zero entries in their
suggested procedure. In the final part, there were many different long-winded proofs of the
requested result, but few simply noted that the result dropped out because of orthogonality
of PQ.

Question 2 on best approximation in inner product spaces and orthogonal polynomials was
attempted by the vast majority of candidates with most being successful in the calculation of
a specific best approximation and several producing reasonable arguments in the last parts
on orthogonal polynomials.

Question 3 on ODE IVP’s had the fewest attempts but attracted the highest marks. Some
failed to notice that the resulting recurrence relation in part (d) could be simply solved by
elementary methods seen in the first year.
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A8: Probability

See Mathematics and Statistics report.

A9: Statistics

See Mathematics and Statistics report.

A10: Fluids and Waves

Question 1. Part (a) of this question was well done in general. A few candidates derived
the Conservation of Mass equation using the Lagrangian approach, but did not state that (in
the absence of sources and sinks) the time rate of change of the mass of a material volume of
fluid that is advected with the flow is zero, instead making an incorrect argument involving
fluxes across a boundary. In (a)(iii) many candidates did not correctly show that when the
flow is incompressible, the Conservation of Mass equation gives that the density of fluid is
preserved following the flow. Regrettably, part (b) of this question had a typo and the half
domain Re(z) ≥ 0 should have read Im(z) ≥ 0. The question did self correct in (b)(ii) where
the position of the wall was stated to be at y = 0. Adjustments were made to ensure all
candidates were treated fairly. Part (b)(i) was well done with the majority of candidates
correctly considering the image vortex. A very small number of candidates got confused with
the required boundary condition stating that the velocity should be zero on the boundary,
instead of the condition of zero normal velocity on the boundary. In (b)(ii) some candidates
did not employ Bernoulli’s theorem for steady irrotational flow, instead using the unsteady
version. A proportion of candidates incorrectly plotted the pressure profile on the wall, instead
plotting the negative of the profile. In (b)(iii) only a few candidates determined the correct
value of x∗.

Question 2. Part (a) was well done in general. Part (b)(i) was well done. In b(ii) a small
number of candidates did not include the necessary image potentials, and hence were unable to
verify the appropriate boundary condition on the do- main was satisfied. In c(i) a significant
proportion of candidates struggled to determine the complex potential in the required limit,
incorrectly computing limiting expressions as a→ 0.

Question 3. This was very well done in general. Some candidates did not pose the correct
separable solution for φ(x, y, t). Not all candidates gave a correct physical interpretation of
the condition in part (c).

A11: Quantum Theory

Question 1 is on a quantum particle in a box. Part (a) is all bookwork, and was generally
answered very well. In part (b) many candidates managed to correctly compute the formula
for the coefficients cn (with occasional computational slips), although a common error was
getting the range of integration wrong, and many candidates didn’t notice that n = 3 needs
to be treated separately. Very few candidates noticed in part (b)(ii) that the expected value
of the energy is the same as it was in the original ground state, although many explained why
it is independent of time t. Candidates who got close to the correct formula for cn in part
(b) also typically got close to the final result in part (c).

Question 2 is on a three-dimensional quantum harmonic oscillator, investigating the Fradkin
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tensor Fij using raising and lowering operators. Although strictly speaking none of this
question is bookwork, it is both similar to the one-dimensional harmonic oscillator in lectures,
and similar to a question in the 2021 exam. Parts (a) and (b) were generally very well
answered, with most errors made in computing the commutator in (b)(ii) (which is zero):
a common problem was using the free indices i and j also as summation indices, and then
mixing up which is which, or getting signs of the commutators wrong. Part (c) regrettably
has a typo (with many apologies from the assessor): aiψ = 0 should have read a−i ψ = 0.
However, almost all candidates either corrected this in their answer, or read it as the correct
latter statement. Many candidates made good progress through part (c), and despite the
typo this question had the highest average mark.

Question 3 is on the first excited state wave functions for the hydrogen atom, and was
attempted by only a handful of candidates. Although the wave functions should be familiar
from lectures, the way they are approached in part (b) perhaps looked too unfamiliar. One
can answer part (c) independently of the rest of the question (apart from knowing the value
of κ = 1/2a), although hardly any candidates attempted it.

Short Options

ASO: Q1. Number Theory

Part (a) was well-answered by many candidates. Part (b) was also well-answered by a good
many candidates, although many candidates made the mistake of assuming that if p− 1 does
not divide k then gk, g2k, . . . , g(p−1)k is a permutation of 1, 2, . . . , p− 1.

One or two candidates found the following nice variant solution: g, 2g, · · · , (p − 1)g is a
permutation of 1, 2, . . . , p− 1 modulo p, so

gk(1k + 2k + · · ·+ (p− 1)k) ≡ 1k + 2k + · · ·+ (p− 1)k.

Since g is a primitive root, if p− 1 - k then gk 6= 1 mod p and so 1k + 2k + · · ·+ (p− 1)k ≡ 0.

Almost no candidates made significant progress with (c) and (d), which is slightly surprising
since these do not appear, on the face of it, to be particularly tricky and are certainly well
within the syllabus for the course. Indeed for (d) there is a shorter solution than the official
one which is just to count solutions to x21 +1 = x22 (p−1 solutions) and then adjust to remove
x1 = 0 and x21 ≡ −1 (if there is a solution to this), then observe that this counts each y for
which both y and y + 1 are quadratic residues four times.

ASO: Q2. Group Theory

This question was about solvability and related conditions (in particular nilpotence) and
various kinds of series (derived, lower central) associated to a group. The question works
through these concepts for the dihedral group.

The material on the structure of the dihedral group in Part (a) was generally done well,
but many candidates were too sketchy in their discussion of what was meant by defining a
group via generators and relations. Several candidates omitted the special case n = 2 in their
discussion of the centre.

Part (b) was generally also well done, with most candidates managing the commutator cal-
culations and finding the derived subgroup and hence the derived series, which reaches {1}
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after two steps.

Part (c) introduced the new concepts of lower central series, and (implicitly) the nilpotence
condition. Many candidates got confused with the calculation at this point, but quite a few
got the idea that repeated commutation with G = D2n kept on squaring the generator, so
that the series only reached {1} when the order of the group was a power of 2.

A reasonable number of candidates got the basic idea for the last part (choosing a nonabelian
simple group) though some could have given a bit more detail.

ASO: Q3. Projective Geometry

The first part of the question was generally well done, either using coordinates or using du-
ality which provides an elegant solution. The second part of the question definitely requires
a coordinate-based approach; this part proved more problematic, with students making cal-
culational errors which made interpretation of results difficult.

ASO: Q4. Multidimensional Analysis and Geometry

Relatively few candidates attempted this question, but most of those who did scored well on it.
In part (a) candidates usually saw how property C implies differentiability, but the converse
proved more challenging (likely for a similar reason the same statement in an arbitrary normed
vector space is harder the condition on Mx does not determine it uniquely, so one has to out
how to produce a choice of Mx which varies continuously). In part (b) many candidates gave
a proof which did not really use part (a). In part (c) most attempts managed to show that S
is a submanifold of R3, but fewer managed to show that T is a submanifold of R6.

ASO: Q5. Integral Transforms

This was quite a straightforward question which had many good answers. The primary source
of lost marks was calculation errors, especially in calculating partial fractions (i.e. residues
in this instance): the ‘cover-up rule’ would have saved a lot of trouble!

ASO: Q6. Calculus of Variations

Overall the question seemed to work well. There was a good spread of marks and so it seemed
to distinguish the stronger candidates from the weaker ones. It was very pleasing that almost
all candidates seemed to have appreicated the fundamental idea of the course, even if they
sometimes struggled with the execution. Some candidates struggled to solve the differential
equation, despite essentially the same one appearing in lectures, and only a small minority
correctly answered the more conceptual final part of the question.

ASO: Q7. Graph Theory

Part (a) was on minimum cost spanning trees and Kruskal’s algorithm. It was standard
material that was done very well. Part (b) was on matchings that are maximal, in the sense
that they are not a subset of a larger matching. Generally, this was done well, although few
students could give the correct answer to (b)(iv). Part (c) was concerned with matchings
and spanning trees. Most students were able to prove that a tree has at most one perfect
matching. Many also spotted that any matching in a connected graph can be extended to a
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spanning tree. Quite a few also realised that Kruskal’s algorithm could be used to prove this,
although there are of course proofs that do not use this algorithm. The final subpart (c)(iv)
was challenging, although there were a few correct solutions to this.

ASO: Q8. Special Relativity

The problem examines the basics of special relativity: notion of the proper time, basic
Minkowski geometry and the basic dynamics in SR. The first and the second parts are either
quite standard or straightforward bookwork. The result is not satisfactory. The dynamics
problem is not meant to be challenging, part of which could be solved without resorting
to SR. However, what surprised me is that students are not familiar with the concepts of
4-acceleration and 4-velocity, all of which are the key ingredients of the course.

ASO: Q9. Modelling in Mathematical Biology

(a)(i) A surprising number of candidates did not state the Law of Mass Action correctly, yet
virtually all candidates used it correctly to derive the system of ordinary differential equations.
(ii) To show that the total number of enzyme was conserved, candidates need to first exaplin
why the total amount of enzyme was e(t) + s(t) and then show from the system of ODEs

derived in (i) that d(e+s)
dt = 0, hence e(t) + s(t) = constant. However, most candidates simply

wrote down d(e+s)
dt = 0 without explaining why or how it relates to total enzyme concentration.

(b)(i) A number of candidates did not realise that a combination of the equations for the
QSSA and conservation of enzyme needed to be used to eliminate e(t) so that c(t) can be
calculated explicitly.

(ii), (iii) were bookwork and done reasonably well, although a number of candidates quoted
the velocity for the product, whilst the question asked for the velocity of the reaction (∗). I
accepted either.

Part (iv) was done very well.

(c) This was a challenging question with some subtle aspects to it, but some candidates
made good attempts. In (i), some candidates got derailed by confusing the chain rule for
differentiation with the product rule.

For (ii), many candidates saw that W (0) satisfies W (0) exp(W (0)) = 0 and, from this,
concluded that W (0) = 0. However, there is another solution to this equation, namely
W (0) = −∞, and only one or two candidates picked this up. The assumption given (that
s(t) is non-negative) means that we can ignore this solution.
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