
Nonlinear Fokker-Planck equations modelling
large networks of neurons

General Prerequisites:
Good knowledge in Functional Analysis; basic knowledge about PDEs and distributions; no-
tions in probability.

Course Term:
Trinity (weeks 6,7,8)

Course lecture information:
4 lectures (2 hours each)

Course Overview:
The course will be a detailed presentation of some nonlinear PDE models in neuroscience, from
derivation and motivation to analytical results, with emphasis on the Nonlinear Noisy Leaky
Integrate and Fire model.

Learning Outcomes:
Understanding how nonlinear non-local PDE models can help to understand the formation of
complex activity in large networks of neurons and get knowledge into the abstract methods used
to study this type of equation: tranformation to a Stefan problem, relative entropy methods,
bifurcation theory...

Course Synopsis:
We will start from the description of a particle system modelling a finite size network of inter-
acting neurons described by their voltage. After a quick description of the non-rigorous and
rigorous mean-field limit results [1, 2, 9], we will do a detailed analytical study of the associated
Fokker-Planck equation, which will be the occasion to introduce in context powerful general
methods like the reduction to a free boundary Stefan-like problem [6], the relative entropy
methods [2, 4], the study of finite time blowup [14, 10] and the numerical and theoretical ex-
ploration of periodic solutions for the delayed version of the model [3, 11]. I will then present
some variants and related models, like nonlinear kinetic Fokker-Planck equations [12, 13] and
continuous systems of Fokker-Planck equations coupled by convolution [7, 5, 8].
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[12] Benôıt Perthame and Delphine Salort. On a voltage-conductance kinetic system for integrate and
fire neural networks. Kinetics and Related Models, 6(4):841–864, 2013.
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