
Algebraic topology bridging the gap 
between single neurons and networks 

Abstract 

This research aims to advance our 
understanding of neuronal networks 
through the integration of topological 
data analysis (TDA), computational 
modelling, and machine learning 
techniques. By combining these 
innovative approaches, we will 
create a comprehensive framework 
for the topological description of 
trees, leading to valuable insights 
into brain function and the 
development of computational 
models of disease brain regions. 

The human brain is a complex 
network of billions of neurons 
connected by trillions of synapses. 
The shapes and connectivity 
patterns of neurons play a critical 
role in brain activity and are 
associated with various brain 
disorders. However, the precise 
mechanisms underlying the 
relationship between neuronal shape 
and network function remain elusive. 
We address this knowledge gap by 
leveraging the power of TDA, which 
allows us to capture and analyze the 
intricate topology of neuronal 
structures. 

To achieve these objectives, we will 
utilize well-studied organisms such 
as C. elegans and Fruit Fly, which 

provide fully reconstructed data, to develop and validate our methodology. These organisms 
offer an excellent opportunity to demonstrate the efficacy of TDA in understanding brain 
function. Furthermore, we will employ computational modelling to simulate artificial neuronal 
trees and investigate the rules governing neuronal growth and network formation. This 
approach will enable us to generate networks with specific topological properties and shed 
light on the fundamental mechanisms underlying neuronal connections.  
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Project 1: Topological Data Analysis 

Title: Topology of Biological Trees, Networks and Point Processes 

Background & Rationale:​
Brain cells such as neurons, microglia, and 
astrocytes possess branching tree-like 
structures and their shape and connectivity 
have profound impact on brain functionality. 
We have developed techniques to study the 
topology of individual neurons based on 
algebraic topology (Kanari et al. 2018) and 
computationally generate neurons based on 
their topological properties (Kanari et al. 2022). 
In addition, through the generative models of 
networks, we can link the topology of single 
cells to the topological properties of the 
networks they form (Kanari et al. 2025).  

The persistence barcodes generated by the tree structures of neurons (TMD) exhibit specific 
properties that are not observed in the persistence barcodes generated from point clouds 
(through Alpha, Vietoris-Rips and Cech filtrations). Namely, the barcodes of neuronal trees 
exhibit constraints in symmetric properties (Kanari et al. 2021. Curry et al. 2024) and defy 
the statistical convergence (Kapatsori and Kanari, in preparation) observed in typical 
persistence diagrams (Bobrowski and Skraba 2023).  

Aims & Objectives: 

●​ Develop and refine topological descriptors (e.g., persistence barcodes, tree metrics, 
tree filtrations) for geometric tree structures.​
 

●​ Construct meaningful embeddings of trees into a metric/topological space, in order to 
map the “space of trees” and compare different types of tree models: biological, 
artificial, healthy and pathological.​
 

●​ Investigate the relationship between the topology of individual trees and the 
topological features of the networks they form (e.g., how certain tree-shapes 
predispose network motifs or connectivity patterns).​
 

●​ Extend tree-based topological descriptors toward the connectivity of graphs and 
networks.​
 

●​ Develop theoretical links between combinatorial tree structures and their topological 
signatures.​
 

 



Related Topics: 

●​ Topological Data Analysis (TDA) for tree structures​
 

●​ Computational topology of biological objects​
 

●​ Topology of graphs and networks derived​
 

●​ Topology of random point processes and trees​
 

Open Questions: 

1.​ Can we generate a meaningful embedding of trees that distinguishes biological trees 
from random tree models?​
 

2.​ What is the relationship between the space of trees and the space of persistence 
barcodes (or other topological summaries)?​
 

3.​ Can combinatorial enumeration be linked to topological invariants derived from 
persistence barcodes?​
 

4.​ How can the tree‐based topological frameworks be extended to study the 
connectivity patterns of graphs/networks?​
 

5.​ What are the limits of convergence (or lack thereof) of neuronal-tree barcodes 
compared to standard point‐cloud persistence convergence results (e.g., Bobrowski 
& Skraba 2023)? 

6.​ What are the relationships between trees and polygon shapes, and can we create 
efficient computational algorithms to study their topological properties? 

References: 

1.​ A Topological Representation of Branching Neuronal Morphologies 
2.​ Computational synthesis of cortical dendritic morphologies 
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4.​ From Trees to Barcodes and Back Again: Theoretical and Statistical Perspectives 
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Project 2: Mathematics for Neuroscience 

Title: Mathematical Models of Neuronal Trees and Network Structure 

Background & Rationale:​
 The morphology of neuronal and glial cells (microglia, 
astrocytes) and the networks they form underlie brain 
function and pathologies. Despite advances in neuro-imaging 
and cell reconstruction, the mathematical theory for linking 
different computational scales is not yet well established. 
Building on recent progress in tree‐topology and generative 
modelling of neurons (Kanari et al. 2018; Kanari et al. 2022; 
Kanari et al. 2025), this project aims to propose a rigorous 
mathematical framework to link the shapes of individual cells, 
their transcriptomics and the topological structure of their 
networks. Such work has potential implications for 

distinguishing cell types, species, pathological states and for generating biologically realistic 
network models. 

Aims & Objectives: 

●​ Use topological and other mathematical descriptors to characterise and distinguish 
neuronal, microglial and astrocytic branching structures.​
 

●​ Develop embeddings (topological/metric) that enable the classification and clustering 
of cell types, species, and disease states based on morphology and connectivity.​
 

●​ Construct and analyse generative mathematical models for biologically realistic 
neuronal networks (e.g., for Drosophila or other accessible organisms) that reflect 
both the single‐cell tree topology and the resultant network connectivity.​
 

●​ Explore the topological link between the structure of single cells and the emergent 
topology of the network they inhabit.​
 

●​ Develop mathematical models to explore the mechanisms of species differences, 
developmental changes and brain pathologies.​
 

Related Topics: 

●​ TDA for neuronal morphology​
 

●​ TDA for microglial and astrocytic cell trees​
 

●​ Mathematical modelling of neuronal networks​
 

●​ Topological links between single‐cell morphology and network architecture​
 



●​ Cross‐species and pathology‐driven topological variance in brain networks​
 

Open Questions: 

1.​ Can we reliably distinguish species, cell‐types or pathologies from the topological 
embedding of neuronal or glial cell trees?​
 

2.​ Can we extend this discrimination to network‐level topology derived from these cells 
(i.e., species/pathology classification via network topology)?​
 

3.​ Can we propose and validate a generative mathematical model for biologically 
realistic neuronal networks (for example in Drosophila) that integrates single‐cell 
topology and network connectivity?​
 

4.​ What mathematical constraints govern the translation from branching morphology to 
network topology, and can these be formalised? 

5.​ Can we use topological data analysis and machine learning to differentiate branching 
structures, such as vascular systems, lung branching trees? ​
 

References: 

1.​ A Topological Representation of Branching Neuronal Morphologies 
2.​ Computational synthesis of cortical dendritic morphologies 
3.​ Objective Morphological Classification of Neocortical Pyramidal Cells Open Access  
4.​ Comprehensive Morpho-Electrotonic Analysis Shows 2 Distinct Classes of L2 and L3 

Pyramidal Neurons in Human Temporal Cortex Open Access  
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networks 
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10.​Quantifying neuronal differentiation using temporal topological persistence 
11.​The connectome of an insect brain 
12.​Tuneable Digital Phantoms for Grey Matter Modelling 
13.​A tool for mapping microglial morphology, morphOMICs, reveals brain-region and 

sex-dependent phenotypes 
14.​Multiscale topology characterizes dynamic tumor vascular networks 
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Project 3: Machine Learning 

Title: Learning Biological Network Representations: Classification, Clustering and 
Generative Models 

Background & Rationale:​
Machine learning (ML) offers powerful tools 
for representing, clustering and classifying 
complex high-dimensional data, including 
biological data, such as the shape of 
neurons, brain images and biological cell 
morphologies. By combining ML with 
topological descriptors, we can develop 
novel descriptors for the accurate and robust 
classification, clustering and embedding of 
biological objects. Moreover, biological 
networks exhibit high topological complexity. 
Leveraging those biological properties to 

inform the architecture of artificial neural networks may yield advances in learning efficiency, 
memory capacity and design of efficient AI architectures. 

Aims & Objectives: 

●​ Develop ML workflows (classification, clustering, representation learning) for 
neuronal trees based on topological and geometric descriptors.​
 

●​ Explore unsupervised/semi-supervised techniques (autoencoders, graph neural 
networks) to link transcriptomic/cellular data with morphological shape and 
connectivity.​
 

●​ Implement and evaluate generative ML models (variational autoencoders, generative 
adversarial networks) for producing biologically realistic network topologies and 
branching structures.​
 

●​ Investigate whether properties of biological networks can inform novel artificial NN 
architectures or learning algorithms with improved performance or robustness.​
 

●​ Build biologically inspired neural networks, based on the architecture of single 
neurons or networks of neurons from different species and explore their learning 
capacity.​
 

 

 

 

Related Topics: 



●​ Classification and clustering of neurons and other brain cells​
 

●​ Representation learning of branching tree structures and networks​
 

●​ Generative modelling of biological inspired networks​
 

●​ Transfer of biological network topological principles to artificial neural networks​
 

●​ Topological Deep Learning  

Open Questions: 

1.​ Can we design a learning mechanism that generates biologically realistic neuronal or 
network topologies?​
 

2.​ To what extent can ML approximate biological networks (fly, mouse, human) from 
limited training data?​
 

3.​ Can properties of biological networks (such as branching diversity, topological 
richness) be transferred to machine learning architectures to enhance their learning 
efficiency, robustness or generalisation?​
 

4.​ How can we improve classification and clustering of neuronal trees (or networks) 
using combined topological and ML methods, and what are the limiting factors in 
current methods? 

5.​ Can we explore generative models for random and structured networks and explore 
what differentiates them and what is the advantage of different architectures? 

References: 

1.​ A Topological Representation of Branching Neuronal Morphologies 
2.​ Computational synthesis of cortical dendritic morphologies 
3.​ Neuron morphological physicality and variability define the non-random structure of 

connectivity 
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repair mechanisms 
8.​ Toward universal cell embeddings: integrating single-cell RNA-seq datasets across 

species with SATURN 
9.​ A quantitative spatial atlas of transcriptomic, morphological, and electrophysiological 

cell type densities in the mouse brain 
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Notes for Students: 

●​ Each of these three tracks is designed to be feasible within a 3- to 4-year full-time 
PhD programme (or equivalent).​
 

●​ Candidates should expect to engage with mathematics (particularly algebraic and 
computational topology), computational modelling, data analysis, and where 
applicable machine learning frameworks.​
 

●​ A strong candidate will have prior experience (or strong interest) in one or more of 
the intersecting domains: topology, neuroscience (cellular/neural morphology), 
machine learning/data science.​
 

●​ Working collaboratively across these topics is highly encouraged.​
 

●​ This structure provides flexibility: a candidate might focus primarily on one track, or 
integrate two or three tracks depending on their skills and interests. 
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