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Abstract

The spatial Moran process is a stochastic process on a graph modelling how an advantageous
mutation spreads through a finite population and, as such, has applications ranging from biol-
ogy, e.g . to model cancer initiation and progression like the development of Leukemia [6, 15], to
social sciences, where closely related models have been used to model voter behaviour and the
spread of ideas trough social networks [18, 26]. The model distinguishes between two types of
vertices, namely “heathy” and “mutated”, which reproduce along the graph’s edges. The key
quantity of interest is the probability of all vertices becoming “mutated”, the so-called fixation
probability of the mutation. Both the asymptotic behaviour of this probability as the underlying
graph grows and the algorithmic problem of approximating this fixation probability have been
well-explored in recent years, most notably by establishing a phase-transition theorem as well
as by providing a fully polynomial randomised approximation scheme (FPRAS) of the fixation
probability [1, 13].

What happens if multiple mutation types, each of different fitness, arise? Then, not only
“mutated” cells will compete against “healthy” cells, but different mutation lineages will fight
for dominance, as it is the case in Carcinogenesis.1 How can we approximate the fixation
probability of each arising mutation type individually? Is it possible to provide an efficient ap-
proximation? This dissertation (1) extends the spatial Moran process to account for multiple
mutants and (2) answers both questions above to the positive, by providing efficient approx-
imation algorithms and good lower bounds. We further (3) explore what happens if we go
beyond the assumption that fitness and number of mutations stay constant, which translates
in complexity terms to a parameterised computational problem.

In more detail, we introduce the k-type Moran process where type 1 can be thought of
as “healthy” vertices and types 2, . . . , k represent the invading mutations, each having their
own fitness ri. If we assume k to be constant and follow previous literature of the 2-type
Moran process in assuming the fitness advantages ri to be constant, we give an FPRAS for
the fixation probability of each individual mutation type. That is, for every connect graph of
size n and every ε > 0 we provide an algorithm that approximates the fixation probability of
every mutation within a factor of (1± ε) with probability at least 1− δ, and has running time
polynomial in n, 1/ε, log(1/δ), where n is the size of the underlying graph (Corollary 25).

We further discover how the approximation problem changes when we regard both the num-
ber of mutants k and their fitnesses as parameters. By introducing a stochastic coupling (The-
orem 26) we can reduce the problem of approximating the fixation probability of the strongest
mutant for any number of mutants k to the 2-type case, yielding lower bounds independent of k
and consequently a fixed-parameter tractable approximation scheme (Main Theorem 5), which
even becomes an FPRAS under reasonable assumptions on the fitness parameter (Corollary 33).
We extend this to approximate the fixation probability of other, sufficiently strong, mutation
types in the parameterised problem version (Main Theorem 6 and Corollary 36). The generality
of our stochastic coupling becomes evident when we derive the bounds on fixation probabilities
obtained in recent work [19] as a corollary of a very restricted subproblem (Corollary 40).

We further resolve an open problem from Monk and Schaik [32] by providing a martingale for
every number of k ≥ 2 types on the complete graph and thereby generalise a known martingale
for the k = 2 type process [31]. Finally, we provide an implementation of the k-type Moran
process.

All results mentioned above are novel results.

1Carcinogenesis, i.e. the formation of cancer. According to Vogelstein et al . a typical tumour
contains two to eight “driver” mutations and hundreds of “passenger” mutations [36]. In the mentioned
social science application, this could be interpreted as multiple competing ideas.
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Notation

Throughout this work, we use the following conventions. We denote by N the natural numbers
{1, 2, . . .}, which we extend to N0 if 0 is included. The positive real numbers are R+ := {r ∈
R : r > 0}. Rm,n is the set of real m× n matrices. R∗ is the set of finite tuples whose elements
are in R.

The variables i, j, k are always positive integers. Positive integers until k are denoted by
[k] := {1, 2, . . . , k}.

Disjoin unions are denoted by ⊔. Adding and removing singletons from sets is denoted by
S + s1 := S ∪ {s1} and S − s1 := S \ {s1}.

All graphs G := (V,E) treated in this work are simple, undirected, connected, and of finite
order n ≥ 3, where n := |V | denotes the graph’s order. Its edges {u, v} ∈ E are abbreviated by
uv ∈ E. For the set of all edges between two vertex sets V1, V2 ⊆ V , we write E(V1, V2). G[S]
is the subgraph induced by S ⊆ V . The complete graph of order n is denoted by Kn.

We denote by Exp (µ) the exponential distribution with parameter µ and recall that the
minimum of two exponentially distributed random variables is again exponentially distributed
with the parameters summed: ∀σ, µ > 0 : X ∼ Exp (σ) , Y ∼ Exp (µ) ⇒ min(X, Y ) ∼
Exp (σ + µ). “l.o.e.” abbreviates “linearity of expectation”. We denote that two distributions

are equal by
distr.
= .

When talking about the k-type Moran process, we always assume 2 ≤ k ≤ n, since there
can be at most as many types as vertices and there need to be at least 2 types to make the
process interesting.
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1 Introduction

Spin systems are widely used in statistical physics and find applications from biology to social
sciences to explain a global behaviour of a set of particles based on their local interaction
[6, 26, 29]. Among those models is the Moran process, which describes how two asexually
reproducing organisms evolve in a finite population over time. Originally proposed by Moran
in 1958 [33], it has been generalised by Lieberman, Hauert and Nowak in 2005 to account for a
spacial structure among the population, modelled by a finite graph [28]. What is the probability
that one organism fixates, i.e. eventually occupies the whole graph, or goes extinct. While
explicit formulas for the fixation probability can be derived for certain families of graphs (e.g . for
regular graphs), there is no efficient way of determining it for arbitrary graphs known. Current
approaches would required to solve a system of equations whose size grows exponentially in the
graph’s order. Thus, the need for efficient randomised approximation schemes arises. Diaz et al .
[13] resolve this need by giving a fully polynomial randomised approximation scheme (FPRAS)
for the fixation probability of the advantageous mutation using a Markov-Chain-Monte-Carlo
algorithm. At the heart of this approximation algorithm lies a lower bound of the fixation
probability, for which Goldberg, Lapinskas, and Richerby later established a phase transition
in the organism’s fitness advantage [1].

The models considered so far only describe the competition between two types of organisms
(in the following described simply as types), which has been used to model how malignant
cancer cells spread through tissue [9]. In such models, the vertices of the graph represent cells,
edges represent a spatial or resource-sharing connection, and each vertex is either “healthy” or
“cancerous” [6]. However, it is well-known that in Carcinogenesis more than just one mutation
occurs. Rather, different types of mutations “fight” for dominance in a tissue. Thus, the
need arises to go beyond the so-called strong-selection, weak mutation assumption, “in which
the time for beneficial mutations to fix is much shorter than the time for successful beneficial
mutations to emerge” [23]. Our goal is twofold: We first extend the spatial Moran process
to account for multiple mutations of different fitness advantages, a process known as Clonal
Interference in genetics [3, 34]. Second, we aim to approximate the fixation probabilities of
each of those mutants efficiently.

We therefore go beyond the standard model of spin systems, which is restricted to vertices
being only in either of two states [29, 30, 27].

Other applications (and variations of) the Moran process include voter behaviour and the
spread of ideas through a social network, where our generalisation to Clonal Interference could
be seen in the latter context as the evolution of multiple competing ideas in a social network
[26, 30]. For brevity, we stick throughout this work to the biological interpretation introduced
above when providing the reader with intuition behind assumptions and definitions.

In the remainder of this section, we first give an intuition behind the Moran process, then
describe similar spin systems and efforts to group multiple of these models into a single “meta-
model”, and subsequently give further biological motivation as well as previous efforts to gen-
eralise to multiple mutation types. We then introduce the model formally and generalise it
to k types (Section 1.1), describe to what extend general Markov chain theory can be applied
(Section 1.2), and then define computational problems arising from the k-type Moran process
(Section 1.3).

The spatial Moran process We now give the intuition behind the spatial Moran process,
before turning to a rigorous mathematical definition in due course (Section 1.1). The spatial
structure is described by a simple, connected graph whose vertices can be though of as cells,
each of which is of either type 1 or type 2. Reproduction happens along the edges. The
difference between both types is that type-1-vertices reproduce at rate r1, and type-2-vertices
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reproduce at rate r2.
Initially, all cells are of type 1, except for one vertex selected uniformly at random which is
of type 2. This vertex embodies the “invading” mutation. At each subsequent time step, one
vertex gets selected at random, where type-1-vertices are selected with probability proportional
to r1 and type-2-vertices proportional to r2.

2 The selected vertex will then reproduce to one of
its neighbours, selected uniformly at random, i.e. copy its type to that neighbour.

Related spin systems There are two to the Moran process closely related Spin systems,
both of which assume an infinite lattice as the underlying graph: The contact process is a
continuous time spin system, where each vertex is in either of two states. Vertices become
infected at rate proportional to the number of infected neighbours and, once infected, become
healthy at some constant rate. The voter model has the same state space. However, state
transitions happen according to a different mechanism: Each vertex waits for an exponentially
distributed amount of time before choosing to adopt its state to one of its neighbours, chosen
according to some probability distribution. This model has been generalised to the biased voter
model, introduced by Schwartz in 1977 [35], where transitions from type 1 to type 2 are more
likely than the reverse transitions. If the underlying lattice is the finite 2-dimensional lattice,
the model is called the Williams-Bjerknese model, who introduced it to study the spread of
cancer in 1972 [38].

For a rigorous treatment of the described models, see Liggett [30] and Bramson and Griffeath
[9]. We will show in Appendix C how Lieberman, Hauert, and Nowak’s model can be regarded
as the embedded discrete time Markov chain of the Williams-Bjerknes model, generalised to
finite graphs.

Even though these models are closely related to the Moran process, only a slight change in
the update rules or a change of the underlying graph changes the system’s global behaviour
significantly, justifying the coexistence of so many models [17].

Grouping these models With multiple, closely related co-exiting models, it would be de-
sirable to group them and study their global behaviour all together. There have been recent
efforts to group a family of similar models with local update rules into a “meta-model”, where
the update rules are treated as a general list of local rules [8], with interesting sequel work (e.g .
[7]). However, models generalised so far have only a random initial state, constrain the set of
infected vertices to be increasing, and have only one absorbing state. The Moran process, in
contrast, has a random initial state and probabilistic update rules. Further, its set of infected
vertices is in general not increasing and our generalised Moran process has, as we will see in
due course, k absorbing states for k types.

Biological motivation The Moran process in its original form3 has been used to model how
an asexual population reproduces, e.g . in the emergence and progression of cancer [5, 6]. To
speed up the computational simulation, the Wright-Fisher Model [20, 39] is often used where,
roughly speaken, the entire population reproduces at once. For the population size tending to
infinity, those models exhibit the same fixation probabilities [37].

However, it became clear that it is not only the mere number of mutants that defines the
system’s behaviour, but also the population’s structure [4]. Thus, the need to account for

2The attentive reader might notice that it suffices to let type-1-vertices reproduce at rate rate
1 and type-2-vertices at rate r2/r1. This is mathematically correct and we will comment on this in
Section 1.1. However, with our generalisation to multiple mutations looming, it is more comprehensive
to assign each type its own rate, including type 1.

3i.e. without accounting for the population’s spatial structure
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spatial structure evolved, motivating the previously mentioned spatial Moran process [28]. In
Appendix C, we describe how Lieberman, Hauert, and Nowak’s model is connected to the so-
called Williams-Bjerknes Tumour Growth Model from 1972 and is thereby not an entire novel
idea, most certainly not for modelling tumour spreading.

Multiple types in previous literature It became evident that modelling only a single
mutation type is not enough to explain phenomena occurring in asexually reproducing popu-
lations [34]. To meet that need for modelling multiple mutation types, different models have
been proposed in literature. The most prominent ones are due to Beerenwinkel et al . [5] and,
most recently, Ferreira and Neves [19]. All proposed models, however, account only for a very
limited case of the Moran process.

Beerenwinkel et al . generalised the Wright-Fisher model [5]. They associate to each fitness
type i fitness (1 + s)i for some parameter s ∈ R+ and ran simulations.4 They quote efficiency
reasons for choosing the Wright-Fisher model over the more natural Moran process in their
simulations. The results stem from simulations and imposing no structure among individual
cells.

Ferreira and Neves proposed a model with three mutation types. Unfortunately, their model
is constrained to the complete graph, so that the population has only a trivial structure. For
this very limited model, they provide bounds on the fixation probabilities of all three types.

It is our mission to fill the gap of generalising the Moran process in its full generality, i.e.
for an arbitrary connected graph, to multiple mutation types. We further aim to provide good
bounds on the fixation probabilities and efficient approximation algorithms. From our general
model, we will be able to derive Ferreira and Neves’ bounds as a special application of our
coupling theorem (Theorem 26), see Appendix B.

1.1 The model

In the following, we use the term Moran process to refer to the spatial Moran process introduced
by Lieberman, Hauert, and Nowak [28]. We first introduce in Section 1.1.1 formal definitions
to describe the 2-type Moran process, which is equivalent to the process considered in previous
literature [28, 14], except that our definition is more comprehensive than necessary. It is this
more comprehensive notation that allows us to easily generalise to the k-type Moran process,
which we introduce in Section 1.1.2. The notation in this section is thus deliberately very
formal, to both allow for an easy generalisation from 2 to k types and to allow for concise
statements in later theorems.

1.1.1 The conventional 2-type Moran process

We first introduce the notion of a fitness vector, capturing the fitness of each type.

Definition 1 (Fitness vector). For k ≥ 2, a fitness vector r := (r1, . . . , rk) ∈ (R+)k is a
positive, strictly increasing vector: ri ≤ rt+1 for any i ∈ [k − 1].

The idea of the strictly increasing property is that we fix the “default”5 type 1 to be the weakest,
since the evolutionary interesting case is when a fitter-than-normal mutation arises. Ordering

4To be concise, they started initially with all type 1 vertices and added, in addition to the normal
reproduction mechanism, a mechanism so that type i can mutate to type i + 1. Thus, the notion of
fixation probability of the strongest mutation is not well-defined since the type of each vertex tends
towards ∞. They therefore analysed a different question, namely, the expected time until mutation
type k arose.

5Initially, all vertices are of type 1. Then, one for each of the types 2, . . . , k is selected at random.
This will become clear in the subsequent definition of the process.
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r2 < · · · < rk, is w.l.o.g. since there is no difference in the Moran process’s definition between
types 2, . . . , k. However, in some occasions, the fitness vector will be non-decreasing or even
unordered. In these cases, we call it explicitly the non-decreasing or unordered fitness vector
r′ and specify its entries further. This notion avoids extensive remapping of the types when we
couple multiple Moran processes in Section 3.

We now introduce the notion of a type mapping, which assigns each vertex a unique type.

Definition 2 (type mapping). For any k ≥ 2 and graph with vertex set V , let σ : V → [k] be
the mapping of each vertex to its unique type.

• We denote by σt the mapping at time t ∈ N0.

• We denote by R (σ) the range (image) of σ. Note that we have |R (σ) | ≥ 1, since each
vertex belongs to some type. We say that σ is trivial if |R (σ) | = 1.

• For v ∈ V , j ∈ [k], we denote by σ[v 7→ j] the type mapping obtained from σ by changing
v to have type j.

• We denote the preimage of {j} by σ−1(j) for every type j ∈ [k].

With the definition of a type mapping at hand, we can regard a Moran process as the evolution
of its type mapping over time. More precisely, for a given graph G = (V,E) and fitness vector
r = (r1, r2), the Moran process M is the Markov chain

M := {σt|t ∈ N0}

defined on the state space Ω := {V → [2]}, where σt are 2-type mappings, with transition
probabilities:

∀v /∈ σ−1
t (1) : P [σt+1 = σt[v 7→ 1]|σt]=

∑
u∈N(v)∩σ−1

t (1)

rσt(u)

W (σt)
· 1

deg(u)

=
r1

W (σt)

∑
u∈N(v)∩σ−1

t (1)

1

deg(u)
(1)

∀v /∈ σ−1
t (2) : P [σt+1 = σt[v 7→ 2]|σt]=

∑
u∈N(v)∩σ−1

t (2)

rσt(u)

W (σt)
· 1

deg(u)

=
r2

W (σt)

∑
u∈N(v)∩σ−1

t (2)

1

deg(u)
(2)

P [σt+1 = σt|σt] = 1−
∑

v/∈σ−1
t (1)

P [σt+1 = σt[v 7→ 1]|σt]−
∑

v/∈σ−1
t (2)

P [σt+1 = σt[v 7→ 2]|σt] . (3)

with W (σt) := r1 · |σ−1
t (1)|+ r2 · |σ−1

t (2)| being the population’s overall fitness in state σt.
Transition probabilities (1) and (2) result from our intuitive description of the process as

follows: At each time step, one vertex u ∈ V is selected at random, where type j vertices are
selected proportionally to rj for j ∈ {1, 2}. Vertex u reproduces to (i.e. copies its type to) a
neighbour selected u.a.r. Hence, to obtain the probability that any vertex v ∈ V changes its
type, we have to sum over all vertices u ∈ N(v) that are of a different type the probability that u
gets selected (i.e. rσt(u)/W (σt)) and reproduces to its neighbour v (i.e. 1/deg(u)). Equation (3)
simply accounts for the remaining cases when no vertex changes its type.
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Properties of the Markov chain We have two absorbing states: For the state σ with
R(σ) = {1}, we have σ−1(2) = ∅, so that σ is absorbing by eq. (2). Similarly, σ′ with R(σ′) =
{2} is absorbing. From any other state σt with R(σt) = {1, 2}, there will be a pair of adjacent
vertices uv ∈ E such that σt(u) ̸= σt(v), since G is connected. Thus, there is a positive
probability of transitioning to either

σt+1 = σt[u 7→ σt(v)] (4)

or σt+1 = σt[v 7→ σt(u)]. (5)

Iteratively applying this argument, we can reach eventually with positive probability both the
state σ with R(σ) = {1} as well as the state σ with R(σ) = {2}. Hence, the Moran process is
an absorbing Markov chain and we can characterise its state space by stating for any σ ∈ Ω:

• σ is absorbing (and thereby recurrent) if |R(σ)| = 1,

• else, σ is transient.

Therefore, the Moran process will eventually reach an absorbing state, i.e.

∀σ0 : P
[

lim
t→∞
|R(σt)| = 1

∣∣∣∣σ0

]
= 1 (6)

Let us quickly sketch the proof of this claim.

Proof. The ergodic states are exactly those σ with |R(σ)| = 1. The claim follows from a basic
argument about finite absorbing Markov chains, e.g . Theorem 3.1.1 in [25].

The question of interest is thus: What is the probability for the Moran process to converge
to the “all-have-type-1” (extinction of the mutation) absorbing state and what is the probability
to converge to the all-have-type-2 (fixation of the mutation) absorbing state. For the Moran
process on a graph G with fitness vector r, any state σ, and type j ∈ {1, 2} we define

f j
G,r(σ) := P

[
lim
t→∞

R(σt) = {j}
∣∣∣∣σ0 = σ

]
(7)

to be the probability to reach the all-have-type-j absorbing state, given that we start in σ.
Lieberman, Hauert, and Nowak consider the process where all vertices are of the weaker

type (type 1) initially, except for one uniformly at random chosen vertex v ∈ V which has type
2 initially. In the context of cancer, that corresponds to one (random) cell mutating initially.
The quantity of interest is then

f j
G,r :=

1

|Θ|
∑
σ∈Θ

f j
G,r(σ) =

1

n

∑
σ∈Θ

f j
G,r(σ) (8)

where Θ :=
{
σ ∈ Ω

∣∣ |σ−1(2)| = 1
}

is the set of all states σ with one type-2 vertex. By eq. (6),
we have ∑

j∈{1,2}

f j
G,r = 1. (9)

f 2
G,r is called the fixation probability, i.e. the probability for the mutation eventually occu-

pying the whole graph. f 1
G,r is the extinction probability, i.e. the probability that the mutation

goes extinct eventually. Note that eq. (9) yields immediately f 1
G,r = 1− f 2

G,r.
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On normalising the fitness r1 The attentive reader will have realised that the fitness of
type 1, r1, is unnecessary. Since we are only interested in the relative fitness between both
mutants, we might just as well fix r1 ≡ 1. Indeed, mathematically, we have

P [σt+1 = σt[v 7→ 1]|σt] =
∑

u∈N(v)∩σ−1
t (1)

r1
W (σt) · deg(u)

( by eq. (1))

=
∑

u∈N(v)∩σ−1
t (1)

r1(
r1 · |σ−1

t (1)|+ r2 · |σ−1
t (2)|

)
· deg(u)

(by def. of W (σt))

=
∑

u∈N(v)∩σ−1
t (1)

1(
1 · |σ−1

t (1)|+ r2/r1 · |σ−1
t (2)|

)
· deg(u)

(10)

Similarly, for eq. (2),

P [σt+1 = σt[v 7→ 2]|σt] =
∑

u∈N(v)∩σ−1
t (2)

r2/r1(
1 · |σ−1

t (1)|+ r2/r1 · |σ−1
t (2)|

)
· deg(u)

, (11)

while eq. (3) still captures the case of no state change.
Hence, we could have used simply the fitness vector r ′ := (1, r2/r1). This convention is used

in previous literature [28, 14, 1]. However, when we generalise to the multi-type Moran process
in the subsequent section, it is notationally clearer to assign each type without exception its
own fitness and thereby to omit this normalisation. We thus stick to our definition of the fitness
vector r (Definition 1), but note that it is possible to convert to the normalised notation as
described above.

On the connectedness assumption We noted before that all graphs considered in this work
are assumed to be connected. The motivation for this assumption is very simple: Consider a
graph consisting of two connected components V1, V2. If the mutation starts initially in V1, it
has no chance of ever reaching V2, since reproduction happens along edges. Hence, the mutation
might fixate in V1, but can never reach V2 so that the final state might be a mixture between
fixation on V1 and extinction in V2. For such disconnected graphs, however, we can just consider
the Moran process on each connected component individually, so that focusing to connected
graphs in this work poses no restriction at all.

With our notation-machinery set up for the 2-type Moran process, it is now an easy task
to generalise to the k-type process for every k ≥ 2.

1.1.2 The k-type Moran process

We now generalise the Moran process to k types, for every k ≥ 2, corresponding to the notion
of Clonal interference in evolutionary biology [34]. The generalisation can be stated compactly:
Instead of two types, we have k types, each with their own fitness. Initially, we still start with
all vertices having type 1 but instead of one random vertex mutating to type 2, we have now
k − 1 vertices mutate each to one of the types 2, . . . , k. This set of distinct vertices is chosen
uniformly at random. Let us formalise this notion.

We have already defined both fitness vector r (Definition 1) and type mapping (Definition 2)
for k types. The k-type Moran process with fitness r on graph G = (V,E) of order n (with
2 ≤ k ≤ n) is thus the Markov chain

M := {σt |t ∈ N0}

6



defined on the state space Ω := {V → [k]}. For the evolution, every vertex of type j ∈ [k] is
reproducing at rate rj to copy its type to one of its neighbours:

∀v /∈ σ−1
t (j) : P [σt+1 = σt[v 7→ j]|σt] =

∑
u∈N(v)∩σ−1

t (j)

rj
W (σt)

· 1

deg(u)
(12)

with W (σt) :=
∑

j∈[k] rj · |σ
−1
t (j)| being the population’s overall fitness in state σt. The proba-

bility of remaining in the same state is

P [σt+1 = σt|σt] = 1−
∑
j∈[k]

∑
v/∈σ−1

t (j)

P [σt+1 = σt[v 7→ j]|σt] . (13)

These transition probabilities are consistent with the 2-type Moran process, since eqs. (12)
and (13) are equal to eqs. (1) to (3) for k = 2.

We have thus k-absorbing states: each σ : V 7→ [k] with |R (σ) | = 1. The fixation
probability of type j ∈ [k] given that we start in some state σ is the probability of type j
fixating, i.e. that eventually, all vertices have type j. The fixation probability in general is
the average of this quantity over all possible starting states. Formally, we define the fixation
probability as follows.

Definition 3 (Fixation probability). For any graph G, k-type fitness vector r, state σ, and
type j ∈ [k], we define the fixation probability from state σ

f j
G,r(σ) := P

[
lim
t→∞

R(σt) = {j}
∣∣∣∣σ0 = σ

]
.

The fixation probability is

f j
G,r :=

1

|Θ|
∑
σ∈Θ

f j
G,r(σ) =

(n− k + 1)!

n!

∑
σ∈Θ

f j
G,r(σ) ∈ [0, 1],

where Θ :=
{
σ ∈ Ω

∣∣ ∀j ∈ [k] \ {1} : |σ−1(j)| = 1
}

is the set of all states with exactly one vertex
per type i ∈ [k] \ {1}.

This definition is consistent with the definition of the fixation probability in previous literature
for k = 2, where f 2

G,r is called the fixation probability (in our case, fixation of type 2) and f 1
G,r

is called the extinction probability (in our case, fixation of type 1) [14, 22, 1]. As in the 2-type
case, all fixation probabilities sum to 1: Since we will eventually reach one of the k absorbing
states, we have ∑

j∈[k]

f j
G,r = 1. (14)

We provide in Appendix D an efficient implementation of the k-type Moran process.

Example of the k-type Moran process Consider Figure 1 for an example of the k = 3-type
Moran process on a star graph in Figure 1, where type 1 fixates after 5 steps.
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v4 v5
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v5

(a) Time t = 0: Initially, all
vertices are of type 1 (white)
except for one type 2 vertex
(yellow) and one type 3 vertex
(blue).

v1

v2

v3

v4 v5

v6

v7

v5

v2

(b) Time t = 1: Vertex v1 gets
chosen for reproduction to v2.
Hence, v2 also becomes a type
2 vertex (yellow).

v1

v2

v3

v4 v5

v6

v7

v5

v2

(c) Time t = 2: Vertex v5
gets chosen for reproduction to
its (only) neighbour v1, which
thus becomes a type 3 vertex
(blue).

v1

v2

v3

v4 v5

v6

v7

v5

v2

(d) Time t = 3: Vertex v6 re-
produces to v1.

v1

v2

v3

v4 v5

v6

v7v2

(e) Time t = 4: Vertex v1 re-
produces to v5. Hence, the last
type-3-vertex has died, so that
type 3 is now extinct.

v1

v2

v3

v4 v5

v6

v7

(f) Time t = 5: Vertex v1 re-
produces to v2. All vertices are
now of type 1, so that type 1
has fixated.

Figure 1: A possible evolution of the 3-type Moran process on the star graph. In this case,
type 1 (white) fixates after 5 time steps.

1.2 Applicability of the theory of absorbing Markov chains

The overall goal is to compute the fixation probabilities. In the realm of absorbing Markov
chains, this corresponds to finding the probability of reaching each of the absorbing states,
given that we start in a certain initial state. More precisely, we can compute these quantities
by computing the fundamental matrix. Let us enumerate the vertices in some order v1, . . . , vn
and represent every state σ ∈ Ω : V → [k] by the vector σ := (σ(v1), . . . , σ(vn)) ∈ [k]n. If we
denote by j the all-j-vector for j ∈ [k] and enumerate the state space by 1,2, . . . ,k followed
by all n!/(n − k + 1)! many states that have exactly one of each of the types 2, 3, . . . , k, and
then all other remaining states in any order, the kn × kn transition matrix simplifies to

P =

(
I 0
R Q

)
(15)

where I is the k × k identity and 0 the k × (kn − k) 0 matrix. Both R ∈ Rkn−k,k and
Q ∈ Rkn−k,kn−k have to be computed based on the underlying topology represent by the graph.
According to Kemeny and Snell [25], we can compute the matrix B ∈ Rkn−k,k by

B = (I −Q)−1R (16)

where (I−Q)−1 is the so-called fundamental matrix. Bij is then the probability that the process
starting in the i-th transient state6 ends up in the j-th absorbing state (Theorem 3.3.7 in [25]).

6since the first k states are the absorbing states, this corresponds to the i + k-th state in our
enumeration
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We can now compute for every j ∈ [k]:

f j
G,r =

(n− k + 1)!

n!

∑
i∈[n!/(n−k+1)!]

Bij. (17)

However, even in the simplest case of k = 2, this requires the inversion of a matrix whose
size is exponential in n. Therefore, the existing approach on absorbing Markov chains is useless
for large graphs, motivating the use of approximation schemes.

1.3 Computational problems

We now define the computational problems for calculating the fixation probabilities.
The first problem Moran-r assumes r to be constant, and thereby follows previous liter-

ature [14, 1]. We then regard the number of mutants k and the fitness vector r as parameters
for p-Moran. We refine this problem to approximate only the strongest type’s fixation proba-
bility in p-MoranMax and define the promised problem version p-Moran-c-ThFittest to
approximate the fixation probability of sufficiently strong mutation types.

Formally, by denoting for any vector v ∈ Rd by |v| := d its dimension, we define the
following computational problems.7

Moran-r
(where r is a fitness vector)

Input: Graph G and type j ∈ {2, . . . , |r|}.
Output: f j

G,r.

p-MoranMax Input: Graph G and fitness vector r.
Parameter: r.
Output: fk

G,r where k := |r|.

p-Moran
Input: Graph G, fitness vector r, and type j ∈ {2, . . . , |r|}.
Parameter: r.

Output: f j
G,r.

p-Moran-c-ThFittest
(for some c ∈ N)

Input: Graph G, fitness vector r,
and type j ∈ {max(2, |r| − c + 1), . . . , |r|}.

Parameter: r.

Output: f j
G,r.

We will only attempt to approximate f j
G,r for j > 1, since this quantity can be for j = 1

exponentially small in n, as it is the case for k = 2 on the complete graph [13].
Recall that a Randomised Approximation Scheme (RAS) for a Problem on input I with

parameter P is a randomised algorithm A that takes as input an instance I and error tolerance
ε ∈ (0, 1) such that

(1− ε)Problem(I) ≤ A(I, ε) ≤ (1 + ε)Problem(I) (18)

holds with probability at least 3/4. Problem(I) denotes the solution of Problem on input
I.
If the running time of algorithm A is bounded by p1(∥I∥) · p2(1/ε) for some polynomials p1, p2,
we say that A is a Fully Polynomial Randomised Approximation Scheme (FPRAS), where ∥·∥
denotes the encoding length.
If the running time of algorithm A is bounded by g(P ) · p1(∥I∥) · p2(1/ε) for any computable
function g and some polynomials p1, p2, we say that A is a Fixed-Parameter Tractable Ran-
domised Approximation Scheme (FPTRAS). Choosing r as a parameter, is syntactic sugar since

7Recall that the fitness vector (Definition 1) is strictly increasing.
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a parameterisation of a problem must be a computable function from the input to a number.
In our case, the number we are interested in is actually |r|+ maxj∈[k]

ri
ri−ri−1

.

On using the parameterised complexity framework When providing an FPRAS for
Moran-r, we will see later that its running time has a factor of nΘ(k), i.e. it is exponential
in k with base n (Section 3.1). Can we do better? Since we still assume that the number of
mutants (k) is much smaller than the graph’s order (n), we are interested in algorithms with
running time of the form

g(k) · poly(n) (19)

for any function g(k), which is independent of n. Hence, we are interested in so-called fixed-
parameter tractable algorithms due to Downey and Fellows [16] (see also the excellent textbook
by Cygan et al . [12]). Since we are interested in approximation algorithms, we use the concept
of Fixed-Parameter Tractable Randomised Approximation schemes, introduced by Arvind and
Raman [2].

For the input, we assume the graph is encoded as an adjacency matrix and thus

∥G∥ ∈ Θ
(
n2
)
. (20)

The computational problem considered in previous work is equivalent to Moran-r for
r ∈ R1, since the fitness is assumed to be constant [13, 14, 1].

1.4 Results

For the problem Moran-r, i.e. where r is a constant, we provide an FPRAS.

Main Theorem 4. Moran-r has an FPRAS.

Thus, we have a fully polynomial randomised approximation algorithm. Once we consider
r to be non-constant, we loose the polynomial running time since this algorithm’s running time
is exponential in the dimension of r, i.e. in k. Since we consider the number of mutants, k, to
be much smaller than the graph’s order, we turn to the parameterised problems and find an
FPTRAS for p-MoranMax.

Main Theorem 5. p-MoranMax has an FPTRAS.

We then generalise this to the promised problem p-Moran-c-ThFittest.

Main Theorem 6. p-Moran-c-ThFittest has an FPTRAS.

The running times of the approximation algorithms for both p-MoranMax and p-Moran-
c-ThFittest are even independent of k, so that we get FPRASes under reasonable assumptions
on the components of r (Corollary 33 and 36).

The key ingredient for both FPTRASes is a stochastic coupling relying on the continuous
time generalisation of the Moran process (Theorem 26) which is interesting on its own since it
allows to translate a phase transition in the k = 2 case to the strongest mutant for any k ≥ 2
(Theorem 31) and yields the bounds provided by Ferreira and Neves recently [19] as a simple
corollary, as we show in Appendix B.

When considering the special case of the complete graph Kn, we will see that the state space
can be simplified to the evolution of a vector S ∈ (N0)

k, denoted by {St : t ≥ 0}. Denoting the
state changes by Xt, we can define a function f(St) (Definition 37) on the state space which is
a martingale:

Main Theorem 7. The sequence {f(St) : t ≥ 0} is a martingale with respect to the sequence
{Xt : t ≥ 0}, where we define X0 ≡ 0.

This resolves an open problem raised by Monk and Schaik.

10



1.5 Outline

This dissertation is organised as follows. In Section 2, we derive upper bounds on the expected
absorption time for every mutant j ∈ [k]. We then derive lower bounds on the fixation prob-
abilities in Section 3 by establishing a stochastic coupling and provide efficient approximation
algorithms. In Section 4, we provide a martingale for the Moran process on the complete graph,
resolving an open problem posed by Monk and Schaik. We conclude by motivating research
into several further directions in Section 5.
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2 Bounding the absorption time

In this section, we provide upper bounds on the expected absorption times (Definition 8) in
the k-type Moran process.

We will first upper bound the expected absorption time for type k (Section 2.1) and then,
inductively, upper bound the expected absorption time for any type j < k (Section 2.2). We
finally answer the question of whether simulating so-called active steps only, a practice employed
successfully for the 2-type Moran process, leads with the present techniques to an improvement
of the upper bound (Section 2.3).

Throughout this section, the fitness vector r is assumed to be non-decreasing, so that type
k is the strongest type in the k-type Moran process.

2.1 Absorption time for mutant k

We now bound the absorption time of type k using a potential function technique, generalising
an idea by Goldberg, Lapinskas, and Richerby [1] to the k ≥ 2 case.

Formally, the absorption time of type j ∈ [k] is the first time when type j either fixates or
goes extinct:

Definition 8 (Absorption time). Let M = {σt}t∈N0 be the k-type Moran process. We define
the stopping times

τj := min
{
t ∈ N0 : R (σt) = {j} ∨ j /∈ R (σt)

}
(21)

for any type j ∈ [k]. We say τj is the absorption time of type j.

Definition 9. We define the potential function Ψ for any state σ : V → [k]:

Ψ(σ) :=
∑

v∈σ−1(k)

1

deg(v)
. (22)

We further recall the definition of drift from [1]. While drift is not needed in our approx-
imation algorithm results later, we include it in Lemma 11, so that the interested reader can
easily compare it to the case of k = 2 mutants in previous literature (Lemma 8 in [1]).

Definition 10 (Drift, Definition 7 in [1]). For any graph G = (V,E) and any pair of disjoint
vertex sets S1 ⊔ S2 ⊆ V , their drift is defined by

Dr (A,B) :=
∑

(x,y)∈E(A,B)

1

deg(x)deg(y)
. (23)

Lemma 11. For the k-type Moran process on any connected graph G = (V,E) with fitness r
where rk−1 < rk, we have

∀σ : V → [k] s.t. 0 <
∣∣{σ−1(k)

}∣∣ < n :

E [Ψ(σt+1)−Ψ(σt)|σt = σ] >
rk − rk−1

nrk
Dr

(
σ−1(k), V \ σ−1(k)

)
>

(
1− rk−1

rk

)
n−3,

i.e. for any state σ where type-k-fixation has not yet happened, Ψ(σ) is strictly increasing in
expectation with the given lower bound.
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Proof. Let G, σ, i be arbitrary as defined in the theorem. Denoting by W (σ) > 0 the state’s
overall fitness, we have

E [Ψ(σt+1)−Ψ(σt)|σt = σ] (24)

=
∑
xy∈E
σ(x)=k
σ(y) ̸=k

P [x reproduces to y] (Ψ(σ[y 7→ k])−Ψ(σ))

+ P [y reproduces to x] (Ψ (σ[x 7→ σ(y)])−Ψ(σ)) (25)

=
∑
xy∈E
σ(x)=k
σ(y) ̸=k

rk
W (σ)

1

deg(x)
(Ψ (σ[y 7→ k])−Ψ(σ)) +

rσ(y)
W (σ)

1

deg(y)
(Ψ (σ [x 7→ σ(y)])−Ψ(σ)) (26)

=
1

W (σ)

∑
xy∈E
σ(x)=k
σ(y)̸=k

rk
deg(x)deg(y)

−
rσ(y)

deg(x)deg(y)
(27)

=
1

W (σ)

∑
xy∈E
σ(x)=k
σ(y)̸=k

(rk − rσ(y))
1

deg(x)deg(y)
(28)

≥ rk − rk−1

W (σ)

∑
xy∈E
σ(x)=k
σ(y) ̸=k

1

deg(x)deg(y)
(rσ(y) ≤ rk−1)

>
rk − rk−1

nrk

∑
xy∈E
σ(x)=k
σ(y) ̸=k

1

deg(x)deg(y)
(W (σ) < nrk)

≥ rk − rk−1

nrk
Dr

(
σ−1(k), V \ σ−1(k)

)
(29)

>

(
1− rk−1

rk

)
n−3. (30)

Where eq. (25) follows since any change to σ−1(k) and thereby any change to Ψ(σ) comes from a
vertex reproducing along an edge of the cut set E (σ−1(k), V \ σ−1(k)). Since 0 < |σ−1(k)| < n,
this set is indeed non-empty. Eq. (30) follows since the aforementioned cut set is non-empty
and since each vertex degrees is less than n.

Upper bounding E [τk]

The technique used to upper bound E [τk] relies on a technique called drift analysis used to
bound the expected absorption time of supermartingales, introduced by Hajek [24]. Goldberg,
Lapinskas, and Richerby applied these techniques to study the 2-type process. While general-
ising their analysis to the k-type process, we will rely on Lemma 45 in [1], which we recall here
with notation adapted to this work, to make references in the following proof easier.

Lemma 12 (Lemma 45 in [1]). Let M := {σt | t ∈ N0} be a Markov chain with finite state
space Ω. Let c1, c2 > 0, let Ψ : Ω → R≥0 be a function and τ ≥ 0 be a stopping time with
τ ≤ min {t | Ψ(σt) = 0 ∨Ψ(σt) ≥ c1}. Suppose that:

(i) from every state S1 ∈ Ω with 0 < Ψ(S1) < c1, there exists a path in M from S1 to some
state S2 with Ψ(S2) = 0 or Ψ(S2) ≥ c1;

13



(ii) for all t ≥ 0, if Ψ(σt) < c1, then Ψ(σt+1) ≤ c1 + 1; and

(iii) for all t ≥ 0 and all σ ∈ Ω such that the events τ > t and τi = τ are consistent, we have

E [Ψ(σt+1)−Ψ(σt) | σt = σ] ≥ c2.

Then we have

E [τ ] ≤ (c1 −Ψ(σ0) + 1)/c2.

Since we have already upper bounded the expected drift of the potential function Ψ in
Lemma 11, we can now apply Lemma 12 to upper bound E [τk].

Corollary 13. For the k-type Moran process with rk−1 < rk on any graph G = (V,E) of order
n and any initial state σ0 : V → [k], we have for the absorption time of type k:

E [τk] <
rk

rk − rk−1

(n + 1)n3, (31)

Proof. Let M := {σt|i ∈ N0} be the Markov chain corresponding to the k-type Moran process
with state space Ω. Note that we can rewrite τk (Definition 8) by

τk := min {t : Ψ(σt) = 0 ∨ Ψ(σt) = c1} (32)

where c1 :=
∑

v∈V 1/deg(v). If σ0 is absorbing, τk = 0 and the lemma holds trivially.
Otherwise, not that by definition of the Moran process, Ω is finite. Note also that Ψ

is non-negative for every state. We now show that all three requirements (i) − (iii) of the
supermartingale lemma (Lemma 45 in [1]) are satisfied.
For (i), suppose 0 < Ψ(σ) < c1 for some σ ∈ Ω. Since any absorbing state σ′ fulfils Ψ(σ′) ∈
{0, c1}, we know that σ cannot be absorbing. Since 0 < Ψ(σ), there exists at least one type-k
vertex. Since G is connected, this vertex can reproduce with positive probability to all of its
neighbours, which in turn reproduce to their neighbours, and so forth until the entire graph is
of type k. Call that new state σ∗. Then, Ψ(σ∗) =

∑
v∈V 1/deg(v) = c1 by definition of c1.

For (ii), observe that the maximum potential is c1.
For (iii), we have by Lemma 11

E [Ψ(σt+1)−Ψ(σt)|σt = σ] > c2 > 0. (33)

where c2 :=
(

1− rk−1

rk

)
n−3. We get by Lemma 45 of [1]:

E [τk] ≤ c1 −Ψ (σ0) + 1

c2
(34)

<
rk

rk − rk−1

(n + 1)n3, (35)

where the last step follows since c1 < n — recall that G is connected and thus does not contain
isolated vertices.

We now apply Markov’s inequality to turn the upper bound on E [τk] from Corollary 13 into
an upper bound on τk being much larger than its expectation in Corollary 14.

Corollary 14. For the k-type Moran process with rk−1 < rk on any graph G = (V,E) or order
n and any initial state σ0 : V → [k], we have for the absorption time of type k:

∀N ≥ 1 : P [τk ≥ N ] <
rk

N (rk − rk−1)
(n + 1)n3. (36)

Note that Corollary 14 yields only useful results for N > E [τk].
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2.2 Absorption time for any mutant j

After having bounded the expected absorption time for the strongest mutant, we want to extend
our results to any mutant j. In order to get polynomial running times of the approximation
algorithms defined in Section 3, we aim for bounds polynomial in n and k.

Recalling that the absorption time of any type j ∈ [k] is the time when type j either fixated
or went extinct (Definition 8), we can describe our idea is as follows: Since we already have an
upper bound for the expected absorption time of the strongest mutant, we know that after time
τk, either type k fixated (so that types 1, . . . , k − 1 went extinct and have thus been absorbed
by this time) or type k went extinct. In that case, there is some other mutant type j ∈ [k − 1]
the strongest mutant from time τk onwards. We can thus re-apply our bond on the absorption
time of the strongest mutant, which is now type j. Using linearity of expectation makes our
idea mathematically sound.

We define the following stopping time to turn our aforementioned inductive idea into a
rigorous proof.

Definition 15 (τ indj ). For any type j ∈ [k] in the k-type Moran process {σt |t ∈ N0}, we define

τ indj := min
{
t ∈ N0 : R (σt) ∩ {j, . . . , k} = ∅ ∨ R (σt) ∈

{
{j} , . . . , {k}

}}
.

τ indj is thus the first point in time when either all types j, . . . , k are extinct or one of them
has fixated. For the special case j = k, we have τ indk = τk.

Lemma 16. τ indj is monotone decreasing in j, i.e.

∀j ∈ [k − 1] : τ indj ≥ τ indj+1. (37)

Proof. For any j ∈ [k − 1], let τ indj = t for some t ∈ N0 and any Moran process {σt |t ∈ N0}.
We must have by Definition 15 either of the following cases.

Case i) R (σt) ∩ {j, . . . , k} = ∅. Thus, R (σt) ∩ {j + 1, . . . , k} = ∅.

Case ii) R (σt) = {j} . Thus, R (σt) ∩ {j + 1, . . . , k} = ∅.

Case iii)R (σt) ∈
{
{j + 1}, . . . , {k}

}
.

In all cases,

R (σt) ∩ {j + 1, . . . , k} = ∅ ∨ R (σt) ∈
{
{j + 1} , . . . , {k}

}
(38)

holds. Since τj+1 is by Definition 15 the minimum time such that Equation (38) holds, we
conclude τ indj+1 ≤ t = τ indj .

With the monotonicity of τ indj proved formally, we can now conduct our induction proof to

upper bound E
[
τ indj

]
. We will subsequently turn this into an upper bound on E [τj] (Corol-

lary 18).

Theorem 17. For every k-type Moran process {σt |t ∈ N0} with strictly increasing fitness
vector r on any graph G = (V,E) of order n, we have for any type j ∈ [k]:

∀ initial states σ0 : V → [k]. E
[
τ indj

]
≤

k∑
i=j

ri
ri − ri−1

(n + 1)n3.
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Proof by induction. I.H.(j):

∀ initial states σ0 : V → [k]. E
[
τ indj

]
≤

k∑
i=j

ri
ri − ri−1

(n + 1)n3.

B.C. (j=k): Let σ0 : V → [k] be arbitrary. We apply Corollary 13 to prove the claim

E
[
τ indk

]
= E [τk] (by Definition 15)

≤ rk
rk − rk−1

(n + 1)n3. (by Corollary 13)

I.S. (1 ≤ j ≤ k − 1): Assume I.H.(j + 1). Let σ0 : V → [k] be arbitrary. We have

E
[
τ indj

]
= E

[
τ indj − τ indj+1 + τ indj+1

]
(39)

= E
[
τ indj − τ indj+1

]
+ E

[
τ indj+1

]
. (l.o.e.)

For the first part, we get

E
[
τ indj − τ indj+1

]
(40)

=
∑

σ:V→[k]
j∈R(σ)

E
[
τ indj − τ indj+1 | στ indj+1

= σ
]
P
[
στ indj+1

= σ
]

(41)

+
∑

σ:V→[k]
j /∈R(σ)

E
[
τ indj − τ indj+1 | στ indj+1

= σ
]

︸ ︷︷ ︸
=0

P
[
στ indj+1

= σ
]

(42)

where eq. (42) is 0 since if j /∈ R
(
σind
τj+1

)
, we must have τ indj = τ indj+1 by Definition 15.

In eq. (41), we note that for j ∈ στ indj+1
, we must have R

(
στ indj+1

)
∩ {j + 1, . . . , k} = ∅. We

can thus simplify eq. (41) to eq. (44):

∑
σ:V→[k]
j∈R(σ)

E
[
τ indj − τ indj+1 | στ indj+1

= σ
]
P
[
στ indj+1

= σ
]

(43)

=
∑

σ:V→[j]
j∈R(σ)

E
[
τ indj − τ indj+1 | στ indj+1

= σ
]
P
[
στ indj+1

= σ
]

(44)

=
∑

σ:V→[j]
j∈R(σ)

E
[
τ ′j | σ′

0 = σ
]
P
[
στ indj+1

= σ
]

(45)

≤ rj
rj − rj−1

(n + 1)n3
∑

σ:V→[j]
j∈R(σ)

P
[
στ indj+1

= σ
]

︸ ︷︷ ︸
≤1

(46)

≤ rj
rj − rj−1

(n + 1)n3. (47)

Since j is the strongest type in σ : V → [j], we obtain eq. (45) for M ′ := {σ′
t | t ∈ N0}

being the Moran process on G with j types and fitness vector consisting of the first j
entries of r. Hence, Corollary 13 applies on M ′, yielding eq. (46).
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Hence,

E
[
τ indj

]
= E

[
τ indj − τ indj+1

]
+ E

[
τ indj+1

]
(l.o.e.)

≤ rj
rj − rj−1

(n + 1)n3 + E
[
τ indj+1

]
(by eq. (47))

≤ rj
rj − rj−1

(n + 1)n3 +
k∑

i=j+1

ri
ri − ri−1

(n + 1)n3 (I.H.(j + 1))

=
k∑

i=j

ri
ri − ri−1

(n + 1)n3, (48)

concluding our proof.

Corollary 18. For the k-type Moran process with strictly increasing fitness vector r and graph
G = (V,E) of order n, we have for any type j ∈ [k]:

∀σ : V → [k]. E [τj] ≤
k∑

i=j

ri
ri − ri−1

(n + 1)n3.

Proof. Let j ∈ [k], σ : V → [k] be arbitrary. By Definition 15, we have τj ≤ τ indj . Therefore,

E [τj] ≤ E
[
τ indj

]
≤

k∑
i=j

ri
ri − ri−1

(n + 1)n3, (49)

by Theorem 17.

We have thus established an upper bound on E [τj] for any j ∈ [k]. This bound is very
useful for designing efficient approximation algorithms later: Notably, this bound depends
only polynomially on n, so that increasing the graph’s size increases the expected absorption
times at most polynomially, which we can exploit later when constructing a fully polynomial
approximation scheme (Section 3.1). If we impose reasonable conditions on the fitnesses ri for
any i ∈ {j − 1, . . . , k}, the bound is also polynomial in k, a property we will exploit when
considering the parameterised problems (Sections 3.2 and 3.3).

2.3 On the advantage of active-step-only simulation

The content of this section is a remark on the applicability of a possible method to speed up
the process and as such is not needed for later results. Thus, the reader is invited to read the
present section but may skip to Section 3 without compromising their understanding of the
approximation algorithms.

Since not every transition changes the Moran process’s state,8 it is natural to simulate
only those transitions that do so. For the k = 2 process, the potential Ψ changes if and only
if the process’s state changes. However, this is not the case for k > 2: If σt transitions to
a different state σt+1 but the set of k-type vertices remains unchanged (σ−1

t (k) = σ−1
t+1(k)),

then the potential Ψ does not change. Hence, a change in the process’s state does not always
translate to a change in the potential Ψ for k > 3.

8Whenever u reproduces to w with σt(u) = σt(w), we have σt = σt+1.
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Can we asymptotically improve the lower bound on the expected drift of Ψ (Lemma 11),
by simulating only the active steps? For the k = 2 process with the present choice of Ψ
(Definition 9) as potential function, this is possible as shown in previous work [1, 10]. For
k > 2 and the given potential function, we answer this question to the negative in this section.
This might seem surprising at first in the light of Lemma 20.

We first define active steps more formally.

Definition 19 (Active steps). For a Moran process M = {σt | t ∈ N0}, the process

M active := {σt ∈M | σt ̸= σt−1, t ∈ N}

is called the active-steps-only Moran process. We enumerate its states by 0, 1, 2, . . . yielding

M active = {σactive
l | l ∈ N0}.

Since M will eventually converge, M active is finite. The steps of M active are referred to as the
active steps of M .

Lemma 20. For the k-type Moran process executing only active steps on any graph G = (V,E)
with maximum degree ∆, minimum degree δ, and rk−1 < rk, we have

∀σ : V → [k] s.t. 0 <
∣∣{σ−1(k)

}∣∣ < n. ∀t ∈ N0 :

rk − rk−1

(rk + rk−1)∆
≤E

[
Ψ(σactive

t+1 )−Ψ(σactive
t )

∣∣∣ (
σactive
t

)−1
(k) ̸=

(
σactive
t+1

)−1
(k) ∧ σactive

t = σ
]

≤ rk − r1
(rk + r1)δ

.

Since ∆ < n, this would be a quadratic improvement in n compared to Lemma 11, if every
active step changed the set σ−1(k). We will first prove Lemma 20 and then show why we cannot
use this apparent speedup in general.

Proof of Lemma 20. Let G, σ be arbitrary as defined in the lemma. We follow the proof struc-
ture of Lemma 67 in [1]. By definition of active steps, it suffices to prove that for all t ≥ 0,

rk − rk−1

(rk + rk−1)∆
≤E

[
Ψ(σt+1)−Ψ(σt)

∣∣∣ (σ)−1
t (k) ̸= (σ)−1

t+1 (k) ∧ σt = σ
]

≤ rk − r1
(rk + r1)δ

.

Let i ≥ 0 be arbitrary. We have for C := E
(
σ−1
t (k) , V \ σ−1

t (k)
)

E
[
Ψ(σt+1)−Ψ(σt)

∣∣∣ (σ)−1
t (k) ̸= (σ)−1

t+1 (k) ∧ σt = σ
]

(50)

=
∑
xy∈C

E
[
Ψ(σt+1)−Ψ(σt)

∣∣∣ Exy ∧ σt = σ
]
· P

[
Exy

∣∣∣ (σ)−1
t (k) ̸= (σ)−1

t+1 (k) ∧ σt = σ
]

(51)

=
∑
xy∈C

(
rk/deg(x)

rk/deg(x) + rσ(y)/deg(y)

1

deg(y)
−

rσ(y)/deg(y)

rk/deg(x) + rσ(y)/deg(y)

1

deg(x)

)
· P

[
Exy

∣∣∣ (σ)−1
t (k) ̸= (σ)−1

t+1 (k) ∧ σt = σ
]

(52)

=
∑
xy∈C

rk − rσ(y)
rkdeg(y) + rσ(y)deg(x)

P
[
Exy

∣∣∣ (σ)−1
t (k) ̸= (σ)−1

t+1 (k) ∧ σt = σ
]
, (53)
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where Equation (51) follows since (σ)−1
t (k) ̸= (σ)−1

t+1 (k) iff
⋃

xy∈C Exy and since (σ)−1
t (k) ̸=

(σ)−1
t+1 (k) implies σt+1 ̸= σt.
Since for all xy ∈ C, we have

rk − rk−1

(rk + rk−1) ∆
≤

rk − rσ(y)
rkdeg(y) + rσ(y)deg(x)

≤ rk − r1
(rk + r1) δ

, (54)

and since ∑
xy∈C

P
[
Exy

∣∣∣ (σ)−1
t (k) ̸= (σ)−1

t+1 (k) ∧ σt = σ
]

= 1, (55)

we can conclude

rk − rk−1

(rk + rk−1)∆
≤ E

[
Ψ(σt+1)−Ψ(σt)

∣∣∣ (σ)−1
t (k) ̸= (σ)−1

t+1 (k) ∧ σt = σ
]
≤ rk − r1

(rk + r1)δ
. (56)

We noted that for Lemma 20 to improve our bound, we would need that every active step
changes the set σ−1(k) with sufficiently high probability. However, this is not the case. We can
even construct explicitly a family of graphs for which concentrating on active steps only will
not give an (asymptotic) better bound on the expected change of Ψ.

Lemma 21. For every k ≥ 3, there is an infinite family of graphs G such that there exists for
every G ∈ G a state σ with 0 < |{σ−1(k)}| < n and

P
[
(σ)−1

t (k) ̸= (σ)−1
t+1 (k)

∣∣∣ σt ̸= σt+1 ∧ σt = σ
]
<

9(r2 + rk)

r1 + r2

1

n2
,

in the k-type Moran process with fitness vector r, where n denotes the order of G.9

Proof. Let k ≥ 3 be arbitrary and consider the k-type Moran process. For any n ≥ 4 such
that l := n+1

3
∈ N, we define Gn := (V,E) to be the graph consisting of the vertex sets

V := S1 ⊔S2 ⊔S3 of size |S1| = l, |S2| = l, and |S3| = l− 1. Its edge set E consists of the edges
of the complete bipartite graph between S1, S2, the edges of the complete graph on S3, and a
single edge connecting some vertex x ∈ S2 to some vertex y ∈ S3, see Figure 2. We define the
state σ : V → [k] as:

• σ(v) = 1 ∀v ∈ S1

• σ(v) = 2 ∀v ∈ S2

• σ(v) = k ∀v ∈ S3.

To simplify notation, we define for any j ∈ [k] the cut set Cj ⊆ E by

Cj := E
(
σ−1 (j) ,

(
σ−1 (j)

)C)
. (57)

Since Ck is the singleton {xy}, we know that the set σ−1(k) changes iff reproduction happens
from x to y or vice-versa. We also know that (for σ = σt) the event σt ̸= σt+1 happens iff
reproduction happens along any edge in

⋃
j∈[k] Cj.

9We recall that all graphs in this work are connected. We thus show that there exists an infinite
family of connected graphs.
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Denoting by W the population fitness in state σt = σ and by v the vertex chosen for reproduc-
tion to another vertex w, we have

P [{v, w} ∈ E(S1, S2)] =
r1|S1|+ r2(|S2| − 1

|S1|+1
)

W
, (58)

where we have the term |S2| − 1
|S1|+1

since every vertex in S2 − x has only edges to S1, and x

has only one neighbour not in S1, which is chosen with probability 1/deg(x) = 1/(|S1| + 1) in
case v = x.
Further, we have

P [{v, w} = {x, y}] =
r2

1
|S1|+1

+ rk
1

|S3|+1

W
. (59)

Since ⋃
j∈[k]

Cj = E(S1, S2) + {x, y}, (60)

we have

P
[
(σ)−1

t (k) ̸= (σ)−1
t+1 (k)

∣∣∣ σt ̸= σt+1 ∧ σt = σ
]

(61)

= P

[
vw ∈ Ck

∣∣∣∣∣ vw ∈⋃
j∈k

Cj

]
(62)

= P

[
{v, w} = {x, y}

∣∣∣∣∣ {v, w} ∈ E(S1, S2) + {x, y}

]
(using eq. (60))

=
r2

1
|S1|+1

+ rk
1

|S3|+1

r1|S1|+ r2|S2|+ rk
1

|S3|+1

(using eqs. (58) and (59))

<
r2 + rk
r1 + r2

1

l2
(by choice of |S1|, |S2|, |S3|)

<
9(r2 + rk)

r1 + r2

1

n2
. (by definition of l)

We can therefore define our infinite family of graphs as

G := {Gn |n ≥ 5 ∧ n mod 3 = 2} . (63)

Corollary 22. There exists an infinite family of graphs G such that for any G ∈ G of order
n ≥ 8, there is a state σ with 0 < |{σ−1(k)}| < n, such that for any t ≥ 0

E
[
Ψ(σactive

t+1 )−Ψ(σactive
t )

∣∣∣ σactive
t = σ

]
≤ 27(rk − r1)(r2 + rk)

(rk + r1)(r1 + r2)
· 1

n2(n− 5)
.

Proof. It suffices to prove that for any t ≥ 0:

E
[
Ψ(σt+1)−Ψ(σt)

∣∣∣ σt ̸= σt+1 ∧ σt = σ
]
≤ 27(rk − r1)(r2 + rk)

(rk + r1)(r1 + r2)
· 1

n2(n− 5)
. (64)
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Figure 2: The graph Gn ∈ G, where l := n+1
3

.

Let t ≥ 0 be arbitrary. We take G and σ as in Lemma 21 (see Figure 2) and have for any
Gn ∈ G

E
[
Ψ(σt+1)−Ψ(σt)

∣∣∣ σt ̸= σt+1 ∧ σt = σ
]

(65)

=E
[
Ψ(σt+1)−Ψ(σt)

∣∣∣ σ−1
t (k) ̸= σ−1

t+1(k) σt ̸= σt+1 ∧ σt = σ
]

· P
[
σ−1
t (k) ̸= σ−1

t+1(k)
∣∣∣ σt ̸= σt+1 ∧ σt = σ

]
(66)

+ E
[
Ψ(σt+1)−Ψ(σt)

∣∣∣ σ−1
t (k) = σ−1

t+1(k) σt ̸= σt+1 ∧ σt = σ
]

︸ ︷︷ ︸
=0

· P
[
σ−1
t (k) = σ−1

t+1(k)
∣∣∣ σt ̸= σt+1 ∧ σt = σ

]
(67)

≤ rk − r1
(rk + r1) · δ

· 9(r2 + rk)

r1 + r2

1

n2
(by Lemmas 20 and 21)

<
27(rk − r1)(r2 + rk)

(rk + r1)(r1 + r2)
· 1

n2(n− 5)
(since δ(Gn) = n−5

3
and n ≥ 8)

where we get the “= 0” part in eq. (67) since the potential Ψ changes iff σ−1(k) changes
(Definition 9).

We thus have by Corollary 22 an upper bound of Θ
(

1
n3

)
on the expected drift of the active-

steps only Moran process. Since Lemma 11 gave a Θ
(

1
n3

)
lower bound on the expected drift

of Ψ, we can conclude that simulating active steps only does not improve our bound on the
expected absorption time asymptotically. We have thus shown that with the present techniques,
it its not possible to get an asymptotically better bound on the expected absorption time by
active-step-only-simulation for k > 3, contrasting the k = 2 case [1, 10].

We emphasise that this does not rule out the existence of a better bound using different
techniques or a novel potential function. We will comment further on this when discussing
future research in Section 5.
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3 Fixation probability bounds and algorithms

Since we try to approximate the fixation probabilities f j
G,r for j ∈ {2, . . . , k} within a factor

of (1 ± ε) with high probability,10 the task becomes harder the smaller f j
G,r is. To that end,

the goal of this section is to provide lower bounds on the fixation probabilities f j
G,r and to

provide efficient approximation algorithms. In doing so, we first derive a rough lower bound in
Section 3.1. This bound is enough to provide an FPRAS for Moran-r, which we recall from
Section 1.3 to be defined for fixed, increasing r as

Moran-r
(where r is a fitness vector)

Input: Graph G and type j ∈ {2, . . . , |r|}.
Output: f j

G,r.

However, its running time which is exponential in k due to a factor of nΘ(k), can be signifi-
cantly improved, allowing us to tackle harder problems: In Section 3.2, establish a method to
reduce to the 2-mutant case. This reduction is made possible by a stochastic coupling (The-
orem 26) which provides insight into how the process behaves if the fitnesses and initial state
changes and is therefore interesting for its own sake. The coupling allows us to provide good
lower bounds on fk

G,r and thereby to give an FPTRAS for p-MoranMax. We then use the
coupling to improve our bounds for every type j ∈ {2, . . . , k} in Section 3.3, allowing for an
FPTRAS for p-Moran-c-ThFittest, the promise problem of p-Moran. We show that un-
der reasonable assumptions on the fitness vector r, both FPTRASes become even FPRASes,
showing that they are still efficient for large k.

3.1 A generous lower bound on the fixation probability

In this section, we first give a rough lower bound on f j
G,r for any type j ∈ {2, . . . , k}. Since

this lower bound is for fixed r of the form 1
poly(n)

we can use it subsequently for providing an
efficient FPRAS for Moran-r. Recall that all graphs considered in this work are connected.

Lemma 23. For every type j ∈ {2, . . . , k} in the k-type Moran process with strictly increasing
fitness vector r on any graph G of maximum degree ∆, we have

f j
G,r > (k − 1)!

(
rj
rk

)k−2

·
(

1

∆

)k−2
log n

n2k−3
(68)

Proof. Let j ∈ {2, . . . , k} be arbitrary. Recall from Definition 3 that

f j
G,r :=

(n− k + 1)!

n!

∑
σ∈Θ

f j
G,r(σ),

where Θ :=
{
σ ∈ Ω

∣∣ ∀j ∈ {2, . . . , k} : |σ−1(j)| = 1
}

. We define the set

Θ′ :=
{
σ ∈ Θ

∣∣ G [
σ−1({2, . . . , k})

]
is connected

}
. (69)

For any σ′ ∈ Θ′ let S := σ′−1({j, . . . , k}). Since G[S] is connected, there must be a spanning
tree T in G[S]. We root this tree at vj, where vj ∈ S is the unique vertex having type σ′(vj) = j.

10To be concise, this statement holds by using a basic probabilistic amplification technique: By our
definition of FPRAS, the approximation should be within (1± ε) · f j

G,r with probability at least 3/4.
However, by taking the Median of sufficiently many approximations, we get the with high probability
statement. O (log(1/δ)) repetitions are enough to amplify the success probability to be at least 1− δ,
see e.g . Theorem 4.3.4 in [21].
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If the first k − 2 edges chosen for reproduction form some tree traversal of T starting at its
roots vj, then after k − 2 steps, all vertices in S have type j, and all other vertices in V \ S
have type 1. Call this state σ∗. The probability to reach this σ∗ from σ′ within these first k− 2
steps is at least (

rj
rk · n ·∆

)k−2

, (70)

which follows by a rough upper bound that the population’s overall fitness is at most rk · n at
any point in time.

We have further

f j
G,r(σ∗) = f j

G,r+(σ+), (71)

where r+ ∈ (R+)2, σ+ : V → [2] are obtained from r, σ∗ by remapping11 type j to type 2 and
rescaling r+1 := 1, r+2 :=

rj
r1

. Since j ≥ 2, we have r+2 > 1. We are thus in the 2-mutant case
and get by applying Corollary 8 in [14] (subset domination) and Theorem 2 in [1]

f j
G,r+(σ+) ≥ log n

n
. (72)

We can conclude therefore

f j
G,r :=

(n− k + 1)!

n!

∑
σ∈Θ

f j
G,r(σ) (by Definition 3)

≥ (n− k + 1)!

n!

∑
σ′∈Θ′

f j
G,r(σ′) (since Θ′ ⊆ Θ)

≥ (n− k + 1)!

n!

∑
σ′∈Θ′

(
rj

rk · n ·∆

)k−2

· log n

n
(by eqs. (70) to (72))

=
(n− k + 1)!

n!
(n− k + 2)(k − 1)!

(
rj
rk

)k−2(
1

∆

)k−2

· log n

nk−1
(73)

> (k − 1)!

(
rj
rk

)k−2(
1

∆

)k−2
log n

n2k−3
, (74)

where the penultimate step follows by bounding the cardinality of Θ′ as follows: There are at
least n − |S| + 1 many connected subsets of V of size |S|, since G is connected.12 How many
σ′ ∈ Θ′ are there for a given S such that S = σ′−1({2, . . . , k}) (recall that |S| = k − 1)? There

11This is indeed well-defined since all vertices in state σ∗ are either of type 1 or of type j, and thus
the remapping yields a 2-type process.

12We sketch a constructive proof of this claim. Extend the spanning tree T of G[S] to a spanning
tree T ′ of G. For each vertex v ∈ V \S, there is a unique path Pv from T to v via T ′, by the spanning
tree property. S ∪ V (Pv) is thus a unique set for any v ∈ V \ S. We delete vertices from S ∪ V (Pv) in
decreasing order (if vertices have the same distance, take any of them) of their shortest path distance
to v in T , until we obtain a set of size |S|, call this set Sv. Uniqueness: If we deleted all vertices of S,
uniqueness follows by uniqueness of Pv and our order of deletion. Otherwise, the set contains Pv as
well as some other vertices of S. No other Sv contains Pv but not V \ (Pv ∪ S), and thus uniqueness
follows. By our order of deletion, the set must be connected. Thus, there are at least n − |S| + 1
connected sets of size |S| in G.
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are |S|! many permutations for assigning to each of the types 2, . . . , k a single vertex in S. We
can therefore conclude that

|Θ′| ≥ (n− |S|+ 1) · |S|! (75)

= (n− k + 2)(k − 1)! . (76)

We define Algorithm 1 to simulate the Moran process, depending on two functions N, T
which determine the number of simulations as well as the maximal number of simulation steps
depending on the input. We hide the data structure related details for the sake of clearness,
but will elaborate on them in the running time analysis (Lemma 24).

Algorithm 1 (N, T ): Simulating the Moran process, where N, T are functions on (0, 1) ×
N× R∗ × N→ N
Input: Graph G, fitness vector r, type j ∈ {2, . . . , k}, and error tolerance ε ∈ (0, 1), where
n := |G|, k := |r|
Output: Estimate for f j

G,r

1: count← 0
2: N̂ ← N(ε, n, r, j) ▷ Calculate the number of runs
3: T̂ ← T (ε, n, r, j) ▷ Calculate the number of steps per run
4: perform at most T̂ simulation steps of
5: repeat N̂ times
6: Sample {v2, . . . , vk} ⊂ V u.a.r.
7: σ0[vi]← i ∀i ∈ {2, . . . , k}
8: σ0[v]← 1 ∀i ∈ V \ {v2, . . . , vk}
9: Simulate {σi} step by step until fixation
10: if R (σT̂ ) = {j} then
11: count← count + 1
12: end if
13: end
14: simulation end
15: if simulation was interrupted before completion then
16: return “error”
17: end if
18: return count/N̂

We now analyse the running time of Algorithm 1.

Lemma 24. If N̂ ≤ T̂ and N, T are time-constructible, Algorithm 1 has running time

O
(
T (ε, n, r, j) · k · log n + n2

)
,

where k := |r|.

Proof. We first preprocess the graph to get an adjacency array per vertex in time O (n2). We
then maintain a self-balancing search tree Tj per type j ∈ [k] (for k := |r|), which contains the
set σ−1(j) in some order, as well as counters for |σ−1(j)|.

Each step of the Moran process can be simulated in time O (k · log n): For sampling the
vertices v, w where v shall reproduce to w, we first sample the type of v, where the probability
for every type j ∈ [k] is proportional to rj and |σ−1(j)|. For the sampled j, we sample u.a.r.
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an index i ∈ [|σ−1(j)|]. This is possible in time O (k). The i-th vertex on Tj is our chosen v,
which we can access in the balanced binary tree Tj in time O (log |Ti|) ⊆ O (log n). Sampling
w ∈ N(v) u.a.r. works via the adjacency array of v in time O (1). Updating the tree data
structures of w’s old and new type takes, including rebalancing the trees, time O (log n) in e.g .
AVL trees [11].

Since Algorithm 1 simulates at most T (ε, n, r, j) steps, we can conclude that Algorithm 1
has an overall running time of

O
(
T (ε, n, r, j) · k · log n + n2

)
, (77)

concluding our proof.
We note that our analysis is independent of N(ε, n, r, j), since the code part involving N̂

(Line 5) is inside the part which executes at most T̂ simulation steps (Lines 4 to 14). By
requiring N̂ ≤ T̂ , and by assuming time-constructibility of both functions, we can ensure that
the computation of N̂ , T̂ in Lines 2 and 3 works in the required running time.

With our lower bound on f j
G,r from Lemma 23 and upper bound on E [τj] from Corollary 18,

we can now provide an FPRAS for Moran-r.

Main Theorem 4 (restated). Moran-r has an FPRAS.

Proof. We show that Algorithm 1 with the functions13

N(ε, n, r, j) :=

⌈
2−1ε−2

(
rk
rj

)2k−4
1

((k − 1)!)2
n6k−10

log2(n)
ln(16)

⌉

T (ε, n, r, j) :=

⌈
k∑

i=j

ri
ri − ri−1

⌉
(n + 1)n38 (N(ε, n, r, j))2 (where k := |r|)

is an FPRAS for Moran-r. We abbreviate the values of those functions by N̂ , T̂ , as in the
algorithm.

We first show correctness. Note first that both terms N̂ , T̂ are well-defined, since by Defi-
nition 1, r is strictly increasing and all components are non-zero.
We first analyse Lines 5 to 13 as if they were not interrupted. We define Xi to be the indicator
for the i-th simulation reaching type-j-fixation and

p :=
1

N(ε, n, r, j)

N(ε,n,r,j)∑
i=0

Xi, (78)

so that we have E [p] = f j
G,r. By a Chernoff bound we get for any ε > 0

P
[∣∣p− f j

G,r

∣∣ > εf j
G,r

]
≤ 2 exp

(
−2ε2

(
f j
G,r

)2
N̂
)
≤ 1

8
(79)

where we used in the last step that f j
G,r > (k− 1)!

(
rj
rk

)k−2

·
(

1
∆

)k−2 logn
n2k−3 (Lemma 23) and the

definition of N̂ .

13Note that N(ε, n, r, j), T (ε, n, r, j) depend also on type j which we do not use in the definition
of N,T in this theorem. In later theorems, however, this parameter will be used. Including j in the
signature of N,T already here allows for more concise statements later.
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Further, by Corollary 18,

E [τj] ≤
k∑

i=j

ri
ri − ri−1

(n + 1)n3, (80)

Therefore, the probability that type j has not reach fixation in a single simulation (Line 9) by
time T̂ /N̂ is

P
[
τj ≥ T̂ /N̂

]
≤ E [τj]

T̂ /N̂
≤ 1

8N̂
. (81)

The probability that all simulations together take more than T̂ steps is bounded by the prob-
ability that any of the N̂ many simulations takes more than T̂ /N̂ steps, which is by a union
bound at most 1

8
.

Therefore, the probability that the simulation is interrupted and “error” is returned is at
most 1

8
. Given that the simulation is not interrupted, the probability of returning a wrong

numerical error is at most 1
8

by Section 3.1. We have thus by a union bound14 that with

probability at least 3
4
, the algorithm returns a value within a factor 1 ± ε of f j

G,r. It remains
to show that the running time is bounded by a polynomial in the size of the input and 1/ε.
Recall that by definition of Moran-r, r and thereby k := |r| is constant. By Lemma 24, the
running time is in

O
(
T (ε, n, r, j) · k · log n + n2

)
. (82)

We have

T (ε, n, r, j) ∈ O
(
n12k−16

log4 n

)
· ε−4, (83)

so that the overall running time is polynomially in n and 1/ε under the assumption of k := |r|
being constant.

If there is an FPRAS for a particular problem, then the probability of the approximation
algorithm being within a 1 ± ε factor can be amplified from 3

4
to 1 − 1/δ for every δ > 0 by

increasing the running time growing only by a polynomially factor in log 1/δ. For the sake of
illustration, we state in Corollary 25 the result of this amplification technique (see e.g . Theorem
4.3.4 in [21]) for the FPRAS from Main Theorem 4.

Corollary 25. For every ε, δ > 0, there is an Algorithm that approximates Moran-r within
a factor (1± ε) with probability at least

1− 1/δ.

The algorithm’s running time is polynomial in 1/ε, log 1/δ, and ∥I∥ where I is the input.

14More formally, we denote by A the event that the simulation gets interrupted and by B the event
that the output is a numerical value which is outside of our error tolerance. We have P [A] ≤ 1/8.
Further, P

[
B | A

]
≤ 1/8. Since B ⊆ A, we have P [B] ≤ P

[
B | A

]
so that we can union bound

P [A ∨ B] ≤ P [A] + P [B] ≤ 1/4.
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3.2 Improving the lower bound on fk: Reducing to the 2-type case

The lower bound of Lemma 23 is exponential in k := |r| with base 1/n, rendering it useless when
k becomes large. In particular, we need to improve this bound to approximate the parametrised
problems efficiently. We start with the easiest case, namely the fixation probability of the
strongest mutant.15 We hope to achieve a lower bound which is not exponentially small in k
with base 1/n.

We improve the lower bound on fk
G,r by reducing more efficiently to the 2-mutant case. For

doing so, we need to transition to the continuous time analogue of the k-type Moran process.
Intuitively, the necessity stems from us being able to regard each vertex reproducing at its
own speed in the continuous time process, whereas vertices would need to “arrange among
themselves” who is to reproduce at the next time step in the discrete time process. For an
extensive discussion and a concrete example for the necessity of continuous time, see Diaz et
al . [14]. The coupling connects the k-type Moran process to previous literature and thereby
provides great insight into the process, such as a monotonicity result (Corollary 27). With
the help of our coupling, we then present an analogue of the phase transition in the 2-type
case of f 2

G,(1,r) proved by Goldberg, Lapinskas, and Richerby [1], by proving a phase transition

of fk
G,r in the monotonicity of r. With these improved bounds, we provide an FPTRAS for

p-MoranMax and give sufficient conditions on rk−1, rk to obtain an FPRAS.

3.2.1 The continuous time Moran process

The continuous Time Moran process M̃ = {σ̃t|t ∈ R≥0},16 as considered by Diaz et al . [14],
is the Markov process obtained if we equip each v ∈ V with a “clock” tv ∼ Exp

(
rσ̃(v)

)
where

rσ̃(v) is the vertex’s fitness. All exponential distributions are independent. The minimum of all
dt := minv∈V tv gets to reproduce. The motivation for taking the exponential distribution is
twofold: First, it is memoryless, allowing us to provide an inductive argument in our coupling.
Second, we have17 for every v ∈ V

P [dt = tv] =
rσ̃(v)∑
u∈V rσ̃(u)

(84)

which is the probability of v being chosen for reproduction in the discrete case. Therefore,
the discrete time Moran process is indeed the embedded discrete time Markov chain of this
continuous process. Once a vertex is chosen to reproduce, it will reproduce to one of its
neighbours, selected uniformly at random. Equivalently, we could say reproduction from any
vertex v to any u ∈ N(v) happens at rate rσ̃(v)/deg(v).

With the continuous time process introduces, we now prove a general coupling result.

Theorem 26 (Stochastic Domination, superset). For any k ≥ 2 and x, y ∈ [k] with x ≤ y,
let M̃ := {σ̃t | t ∈ R≥0} be a k-type continuous time Moran process with non-decreasing fitness
vector r on any graph G = (V,E). Let M̃ ′ := {σ̃′

t | t ∈ R≥0} be any other k-type continuous
time Moran process on G with the unordered fitness vector r′ such that ∀i ∈ {x, . . . , y} : r′i = ri,
∀i ∈ [k] \ {x, . . . , y} : r′i ≥ rl where l := k − 1 if x = k and l := k otherwise. Visually, this

15Intuitively, since it is the strongest type, we expect its fixation probability to be the highest among
types 2, . . . , k.

16The symbol ˜ denotes that we talk about continuous time.
17Recall that, by essential properties of the exponential distribution, the minimum of a set S of

exponential distributions is exponentially distributed with parameter being the sum of the parameters
in S.
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translates to the following two cases, depending on whether x < k or x = k.

r′ =



r′1
...

r′x−1

r′x
...
r′y
r′y+1
...
r′k



≥ rk
...
≥ rk
= rx (x < k)
...
= ry
≥ rk
...
≥ rk

r′ =



r′1
...
...
...
...
...

r′k−1

r′x



≥ rk−1
...
...
...
...
...
≥ rk−1

= rx (x = k).

(85)

Then there exists a coupling between M̃ and M̃ ′ such that at any point in time t ∈ R≥0,

∀j ∈ {x, . . . , y} : σ̃−1
t (j) ⊇ σ̃′−1

t (j) (86)

implies

∀j ∈ {x, . . . , y} : σ̃−1
t+dt(j) ⊇ σ̃′−1

t+dt(j), (87)

where dt is the time it takes for the first reproduction to happen in M̃ or M̃ ′ after time t.

Proof. We construct this coupling explicitly. Assume eq. (86) holds. We will construct a
coupling such that eq. (87) holds. We slightly abuse notation and denote by rv := rσ̃t(v),

r′v := r′σ̃′
t(v)

the fitnesses of v in M̃ , M̃ ′ at time t.
We define the random variables

∀v ∈ V : tv ∼ Exp (min(rv, r
′
v)) (88)

∀v ∈ V with rv > r′v : t1v ∼ Exp (rv − r′v) (89)

∀v ∈ V with rv < r′v : t2v ∼ Exp (r′v − rv) , (90)

where each random variable can be seen as an exponentially distributed clock. All these random
variables form the “clock set”

C := {tv|v ∈ V } ∪ {t1v|rv > r′v} ∪ {t2v|rv < r′v}. (91)

The “earliest clock” is the random variable

dt := minC. (92)

We evolve the two chains as follows, where we denote throughout this proof by v the vertex
chosen for reproduction and by w the vertex which v reproduces to.

If τ = tv for some v ∈ V : Select a neighbour w ∈ N(v) u.a.r. and evolve the chains syn-
chronously, i.e.

σ̃t+dt := σ̃t[w 7→ σ̃t(v)] (93)

σ̃′
t+dt := σ̃′

t[w 7→ σ̃′
t(v)]. (94)

If τ = t1v for some v ∈ V : Thus, we must have rv > r′v. Select a neighbour w ∈ N(v) u.a.r.
and evolve only M̃ , i.e.

σ̃t+dt := σ̃t[w 7→ σ̃t(v)] (95)

σ̃′
t+dt := σ̃′

t. (96)
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If τ = t2v for some v ∈ V : Thus, we must have rv < r′v. Select a neighbour w ∈ N(v) u.a.r.
and evolve only M̃ ′, i.e.

σ̃t+dt := σ̃t (97)

σ̃′
t+dt := σ̃′

t[w 7→ σ̃′
t(v)]. (98)

We now show that eq. (87) indeed holds. Suppose first that both chains evolve synchronously.
It suffices to show that for all j ∈ {x, . . . , y} (i) if v ∈ σ̃′−1

t (j) reproduces to w, then also
w ∈ σ̃−1

t+dt(j) as well as (ii) if w /∈ σ̃−1
t+dt(j) gets replaced, then also w /∈ σ̃′−1

t+dt(j).
Let j ∈ {x, . . . , y} be arbitrary. For (i), suppose v ∈ σ̃′−1

t (j) reproduces to w. Since σ̃−1
t (j) ⊇

σ̃′−1
t (j) by assumption (eq. (86)), we must have v ∈ σ̃−1

t (j). Since M̃ evolves as well, we have
w ∈ σ̃−1

t+dt(j), concluding case (i). For (ii), suppose w /∈ σ̃−1
t+dt(j) gets replaced. Thus, by the

evolution of M̃ , we must have v /∈ σ̃−1
t (j). Since σ̃−1

t (j) ⊇ σ̃′−1
t (j) (eq. (86)), we must have

v /∈ σ̃′−1
t (j). Since M̃ ′ evolves as well, this means w /∈ σ̃′−1

t+dt(j).
Suppose now that the chains do not evolve synchronously. We define for any type i ∈ [k]

the sets

Si,< := {v ∈ V : σ̃t(v) = i ∧ rv < r′v} (99)

Si,> := {v ∈ V : σ̃t(v) = i ∧ rv > r′v} (100)

Si,= := {v ∈ V : σ̃t(v) = i ∧ rv = r′v}, (101)

which form a partition of V :

V =
⊔
i∈[k]

Si,< ⊔ Si,> ⊔ Si,=. (102)

We perform a case distinction on the vertex v chosen for reproduction. Since we assume that
the chains evolve asynchronously, we must have v /∈ Si,=.

Case v ∈ Si,< for i ∈ {1, . . . , x− 1} if x > 1. Since rv < r′v and since we assume that only
one chain evolves, only M̃ ′ evolves. Since σ̃t(v) = i < x, we have v /∈ σ̃−1

t ({x, . . . , y}). By
eq. (86), this implies v /∈ σ̃′−1

t ({x, . . . , y}). We can conclude for every j ∈ {x, . . . , y}

σ̃−1
t+dt(j) = σ̃−1

t (j) (since M̃ does not evolve)

⊇ σ̃′−1
t (j) (by assumption (86))

⊇ σ̃′−1
t+dt(j). (since v /∈ σ̃′−1

t ({x, . . . , y}) reproduces)

Case v ∈ Si,< for i ∈ {x, . . . , y}. Thus, only M̃ ′ evolves and rv = ri < r′v. We must have
v /∈ σ̃′−1

t ({x, . . . , y}), for if we had v ∈ σ̃′−1
t (j) for some j ∈ {x, . . . , y}, we had by eq. (86)

v ∈ σ̃−1
t (j), which implies rv = r′v by our definition of r′, contradicting rv < r′v.

We can therefore conclude

σ̃−1
t+dt(j) = σ̃−1

t (j) (since M̃ does not evolve)

⊇ σ̃′−1
t (j) (by assumption (86))

⊇ σ̃′−1
t+dt(j). (since v /∈ σ̃′−1

t ({x, . . . , y}) reproduces)

Case v ∈ Si,< for i ∈ {y + 1, . . . , k} if y < k. Thus, only M̃ ′ evolves and ry ≤ ri = rv < r′v.
By definition of r′ and since r is non-decreasing, this means v /∈ σ̃′−1

t ({x, . . . , y}), for if
v ∈ σ̃′−1

t ({x, . . . , y}) we had r′v ≤ ry contradicting ry < r′v. We conclude

σ̃−1
t+dt(j) = σ̃−1

t (j) (since M̃ does not evolve)

⊇ σ̃′−1
t (j) (by assumption (86))

⊇ σ̃′−1
t+dt(j). (since v /∈ σ̃′−1

t ({x, . . . , y}) reproduces)

29



Case v ∈ Si,> for i ∈ {1, . . . , x− 1} if x > 1. We show that this case is impossible. We have

r′v < rv = ri (by def. of Si,>)

≤ rx−1 (since r is non-decreasing)

≤ rl. (by choice of l)

Further, since i < x, we have v /∈ σ̃−1
t ({x, . . . , y}). By eq. (86), this implies v /∈

σ̃′−1
t ({x, . . . , y}), and thus by definition of r′, we must have r′v ≥ rl. But this contra-

dicts r′v < rl, making this case is impossible.

Case v ∈ Si,> for i ∈ {x, . . . , y}. Thus, v ∈ σ̃−1
t ({x, . . . , y}) and rv > r′v, so that only M̃

evolves. We distinguish between two cases.
If v ∈ σ̃′−1

t ({x, . . . , y}), then we must have σ̃(v) = σ̃′(v) by eq. (86). But then, rv = r′v,
contradicting rv > r′v.
Else, v /∈ σ̃′−1

t ({x, . . . , y}). We distinguish further:

If x < k. Then,

r′v ≥ rl (by def. of r′)

≥ rk (by def. of l for x < k)

≥ ry (since r is non-decreasing)

≥ rv. (since v ∈ σ̃−1
t ({x, . . . , y}) and r is non-decreasing)

However, this contradicts rv > r′v.

Else x = k. Thus, {x, . . . , y} = {k}. Then,

σ̃−1
t+dt(k) ⊇ σ̃−1

t (k) (since v ∈ σ̃−1
t (k) reproduces.)

⊇ σ̃′−1
t (k) (by assumption eq. (86))

= σ̃′−1
t+dt(k). (since M̃ ′ does not evolve)

We have covered all sub-cases, concluding the case v ∈ Si,> for i ∈ {x, . . . , y}.

Case v ∈ Si,> for i ∈ {y + 1, . . . , k} if y < k. We show that this case is impossible. We have
x ≤ y < k and rv > r′v. Further,

rl = rk (by def. of l for x < k)

≥ rv (since r is non-decreasing)

> r′v. (by def. of Si,>)

rl > r′v implies by def. of r′ that v ∈ σ̃′−1
t ({x, . . . , y}). By eq. (86), this implies σ̃t(v) =

σ̃′
t(v) and thereby rv = r′v , contradicting rv > r′v.

We can therefore conclude that eq. (87) does indeed hold at time t + dt.
It remains to show that the coupling is indeed faithful up to time dt. Let us denote the

original chains with M̂ (the one with fitness r) and M̂ ′ (the one with fitness r′). We first show
that M̃ is indeed a faithful copy of M̂ . Recall that M̃ evolves if and only if dt = tv or dt = t1v
for some vertex v. By definition of tv, t

1
v, we have for every vertex v ∈ V :

If rv ≤ r′v then M̃ chooses v for reproduction if only if dt = tv. Hence, the clock of v is given

by the distribution tv ∼ Exp (min (rv, r
′
v))

distr.
= Exp (rv).
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Otherwise, rv > r′v and M̃ evolves if and only if dt = tv or dt = t1v so that the clock of v is
given by

min(tv, t
1
v) ∼ min

(
Exp (min(rv, r

′
v)) ,Exp (rv − r′v)

)
(def. of tv, t

1
v)

distr.
= Exp (min(rv, r

′
v) + rv − r′v) (min of exponential distributions)

distr.
= Exp (rv) . (since rv > r′v)

Thus, the clock of v follows an Exp (rv) distribution in M̃ , as it does by definition in M̂ , so
that M̃ is indeed a faithful copy of M̂ in the time span [t, t + dt].

To show that M̃ ′ is a faithful copy of M̂ ′ we use the same argument as before, with the
difference that the case distinction is for every vertex v ∈ V :

If rv ≥ r′v then M̃ ′ chooses v for reproduction if only if dt = tv. Hence, the clock of v is given

by the distribution tv ∼ Exp (min (rv, r
′
v))

distr.
= Exp (r′v).

Otherwise, rv < r′v and M̃ ′ evolves if and only if dt = tv or dt = t2v so that the clock of v is
given by

min(tv, t
2
v) ∼ min

(
Exp (min(rv, r

′
v)) ,Exp (r′v − rv)

)
(def. of tv, t

2
v)

distr.
= Exp (min(rv, r

′
v) + r′v − rv) (min of exponential distributions)

distr.
= Exp (r′v) . (since rv < r′v)

Since M̃ ′ evolves if and only if dt = tv or dt = t2v for some vertex v, M̃ ′ is indeed a faithful copy
of M̂ ′ in the time span [t + dt].

Since the exponential distribution is memoryless, it is possible to apply this argument
inductively beyond time t + dt.

Recall from the definition of the continuous time Moran process and Equation (84), that
when regarding each evolution of the continuous time Moran process as a discrete time step,
the transition probabilities are as in the discrete time Moran process. More formally, if we are
currently in state σ and denote by dt := minv∈V tv the minimum of the clock set,18 we have for
every v ∈ V :

P [dt = tv] =
rσ(v)∑
u∈V rσ(u)

.

The probability for any w ∈ N(v) to be chosen is 1/ deg v as in the discrete time process.
Hence, the discrete time Moran process is just the embedded discrete time Markov chain of
the continuous time Markov process. Therefore, the fixation probabilities are exactly the same
in both the discrete and continuous time version. When we state properties of the fixation
probabilities, the statements are thus valid for both discrete and continuous time.

We get some immediate corollaries from Theorem 26. They cover just special cases, and by
no means the entirety of the insights gained from Theorem 26.

Corollary 27 (Monotonicity of fk in rk). For the (continuous time) k-type Moran process on
any graph G = (V,E), initial state σ : V → [k], non-decreasing fitness vector r and vector r′

where ∀i ∈ [k − 1] : ri = r′i, rk ≤ r′k:

fk
G,r(σ) ≤ fk

G,r′(σ).

18Recall from Section 3.2.1 that tv ∼ Exp
(
rσ̃(v)

)
.
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Proof. We apply Theorem 26 for x = 1, y = k − 1. Note that r′ fulfils the condition of
Theorem 26, since all components are equal except for the k-th component, where we have
r′k ≥ rk =: rl since x = 1 < k. We choose for both M̃ := {σ̃t | t ∈ R≥0} and M̃ ′ := {σ̃′

t | t ∈
R≥0} the initial state σ̃0 = σ̃′

0 = σ, so that we get by inductively applying Theorem 26 for any
point in time t ∈ R≥0:

∀j ∈ [k − 1] : σ̃−1
t (j) ⊇ σ̃′−1

t (j) (103)

⇒
⋃

j∈[k−1]

σ̃−1
t (j) ⊇

⋃
j∈[k−1]

σ̃′−1
t (j) (taking unions)

σ̃−1
t (k) ⊆ σ̃′−1

t (k). (taking complements)

Therefore, whenever type k fixates in M̃ , say at time t = τ , we have V = σ̃−1
τ (k) ⊆ σ̃′−1

τ (k),
so σ̃′−1

τ (k) = V , and thus type k fixates in M̃ ′, too. Formally, this implies that the event “k
fixates in M̃” implies the event “k fixates in M̃ ′”, hence

fk
G,r(σ) ≤ fk

G,r′(σ).

Corollary 27 can be seen as generalisations of Corollary 7 in [14].
If we take x = y = k, we can reduce by Theorem 26 the problem of finding a lower bound for

fk
G,r in the k-type Moran process to finding a lower bound for f 2

G,r′ in a 2-type Moran process.
The latter has been well studied so that we can then apply results from previous literature. We
formalise this in Corollary 28.

Corollary 28. For the (continuous time) k-type Moran process for any k ≥ 2 on any graph
G = (V,E), state σ : V → [k], and non-increasing fitness vector r ∈ (R+)k, we must have

fk
G,r(σ) ≥ f 2

G,r′(σ′),

where the fitness vector r′ ∈ (R+)2 is defined by r′1 := r′k−1, r
′
2 := rk and the type mapping

σ′ : V → [2] is defined by σ′−1(2) := σ̃−1(k), σ′−1(1) = V \ σ′−1(2).

Proof. We define the fitness vector r∗ ∈ (R+)k by ∀i ∈ [k−1] : r∗i := rk−1, r
∗
k := rk. We further

define the continuous time Moran processes M̃ := {σ̃t | t ∈ R≥0} on G with fitness vector r as
well as M̃∗ := {σ̃∗

t | t ∈ R≥0} on G with fitness vector r∗. Both processes have initial state σ:
σ̃0 := σ, σ̃∗

0 := σ.
We apply Theorem 26 on M̃ , M̃∗ with x = y = k. Since x = k implies rl = rk−1, r

∗ satisfies the
condition for the unordered fitness vector in Theorem 26. Further, eq. (86) is trivially satisfied
since both processes have the same initial state. Applying Theorem 26 inductively, we get for
any point in time t ∈ R≥0:

σ̃−1
t (k) ⊇ (σ̃′′

t )
−1

(k). (104)

In particular, whenever type k fixates in M̃∗, say at time t = τ , we have σ̃−1
τ (k) ⊇ (σ̃∗

τ )−1 (k) =
V , so σ̃−1

τ (k) = V , and thus type k fixates in M̃ , too. Therefore,

fk
G,r(σ) ≥ fk

G,r∗(σ). (105)

In M̃∗, there is no difference between types 1 to k − 1: all have the same fitness. Thus, we
can w.l.o.g. aggregate types 1, . . . , k − 1 as type 1 vertices, as well as remap type k to type 2.
Formally, this yields the 2-type process M̃ ′ := {σ′

t |t ∈ R≥0} with fitness vector r′: r′1 := rk−1,
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r′2 := rk and initial state σ̃′
0 := σ′ where σ′−1(2) := σ−1(k), σ′−1(1) := V \ σ′−1(2). Since we

remapped type k to type 2, we can conclude

fk
G,r(σ) ≥ fk

G,r∗(σ) (by Equation (105))

= f 2
G,r′(σ′) (since type k in M̃∗ gets remapped to type 2 in M̃ ′)

Since Corollary 28 holds for any initial state σ, it must in particular hold for those that
map a single vertex to each of the types 2, . . . , k. Hence, it must also hold if any of these states
is selected as initial state with equal probability. We can thus reduce the problem of finding a
lower bound for fk in the k-type process to f 2 in a 2-type process:

Corollary 29. For the (continuous time) k-type Moran process for any k ≥ 2 on any graph
G = (V,E) and non-decreasing fitness vector r ∈ (R+)k, we must have

fk
G,r ≥ f 2

G,r′ ,

where the fitness vector r′ ∈ (R+)2 is defined by r′1 := r′k−1, r
′
2 := rk.

Proof. We define the function g : {V → [k]} → {V → [2]} mapping states from the k-type
Moran process to states of the 2-type Moran process for any σ : V → [k] by

(g(σ))−1 (2) := (σ)−1(k) (106)

(g(σ))−1 (1) := V \ (σ)−1(k). (107)

Applying Definition 3, we have for Θ :=
{
σ : V → [K]

∣∣ ∀j ∈ {2, . . . , k} : |σ−1(j)| = 1
}

fk
G,r =

(n− k + 1)!

n!

∑
σ∈Θ

f j
G,r(σ) (by Definition 3)

≥ (n− k + 1)!

n!

∑
σ∈Θ

f 2
G,r′ (g(σ)) , (108)

where the last step followed by Corollary 28. For k > 2, the function g is not injective on Θ,
since for any σ ∈ Θ, all of the k− 2 many singletons mapped to types 2, . . . , k− 1 under σ get
aggregated to type 2 under g(σ). We thus have that

(n− 1)!

(n− (k − 2)− 1)!
=

(n− 1)!

(n− k + 1)!
(109)

many σ ∈ Θ have the same image g(σ). We can therefore simplify

Θ′ := {g(σ) : σ ∈ Θ}
=

{
g(σ) : σ ∈ Θ

∣∣ |σ−1(k)| = 1
}

(by non-injectivity argument above)

=
{
σ′ : V → [2]

∣∣ |σ′−1(2)| = 1
}
. (110)

Continuing eq. (108), we have

(n− k + 1)!

n!

∑
σ∈Θ

f 2
G,r′ (g(σ)) =

(n− k + 1)!

n!

(n− 1)!

(n− k + 1)!

∑
σ′∈Θ′

f 2
G,r′ (σ′)

(by eq. (109) and def. of Θ′)
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=
1

n

∑
σ′∈Θ′

f 2
G,r′ (σ′)

= f 2
G,r′ . (by Definition 3 and eq. (110))

We can thus conclude

fk
G,r ≥ f 2

G,r′ . (111)

Another corollary from Theorem 26 yields the bounds from Ferreira and Neves [19]. We
derive this in Appendix B.

We can prove an almost symmetric version of Theorem 26.

Theorem 30 (Stochastic Domination, subset). For any k ≥ 2 and y ∈ [k], let M̃ := {σ̃t | t ∈
R≥0} be a k-type continuous time Moran process with non-decreasing fitness vector r on a graph
G = (V,E). Let M̃ ′ := {σ̃′

t | t ∈ R≥0} be any other k-type continuous time Moran process on
G with the unordered fitness vector r′ such that ∀i ∈ {1, . . . , y} : r′i = ri, ∀i ∈ {y + 1, . . . , k} :
r′i ≤ ry+1. Visually, this translates to

r′ =



r′1
...
r′y
r′y+1
...
r′k



= r1
...

= ry
≤ ry+1

...
≤ ry+1.

(112)

Then there exists a coupling between M̃ and M̃ ′ such that at any point in time t ∈ R≥0,

∀j ∈ {1, . . . , y} : σ̃−1
t (j) ⊆ σ̃′−1

t (j) (113)

implies

∀j ∈ {1, . . . , y} : σ̃−1
t+dt(j) ⊆ σ̃′−1

t+dt(j), (114)

where dt is the time it takes for the first reproduction to happen in M̃ or M̃ ′ after time t.

Since the proof is very similar to the proof of Theorem 26, we defer the proof to Appendix A.
We can now translate the phase transition result [1] with the help of Theorems 26 and 30

to a phase transition of fk
G,r in the k-type Moran process:

Theorem 31. For the (continuous time) k-type Moran process for any k ≥ 2 with vector
r ∈ (R+)k on any sufficiently large connected graph G = (V,E), we have

fk
G,r >

(log n)C

n
if r is strictly increasing (r1 < . . . < rk) (i)

fk
G,r =

1

n
if r is constant (r1 = . . . = rk) (ii)

fk
G,r <

1

nC
if r is strictly decreasing (r1 > . . . > rk) (iii)

for all C > 0.
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Proof. We first prove claim (i). In fact, the requirement could be relaxed to r being non-
decreasing and rk−1 < rk. Since r is non-decreasing, it satisfies our definition of a fitness vector
(Definition 1). We have for the 2-dimensional fitness vectors r′ with r′1 := rk−1, r

′
2 := rk and

r∗ with r∗1 := 1, r∗2 := rk/rk−1

fk
G,r ≥ f 2

G,r′ (by Corollary 29)

= f 2
G,r∗ . (by rescaling as in eqs. (10) and (11))

Since rk/rk−1 > 1, the third case of Theorem 2 in [1] applies. Recall from Goldberg, Lapinskas
and Richerby that this theorem applies only to graphs of order bigger than some constant
depending only on rk/rk−1, say for |G| > nrk/rk−1

,19 yielding

f 2
G,r∗ ≥

log(n)C

n
(115)

for |G| > nrk/rk−1
for some constant nrk/rk−1

depending only on rk
rk−1

as in Theorem 2 of [1],

showing claim (i).
We show (ii) by an argument similar to Lemma 1 in [13] by first expanding the number of

types to n. We sample a permutation of V u.a.r. to obtain v1, . . . vn and suppose each vertex
vi has its own type i ∈ [n] initially, where all types have the same fitness: r′ := (r1, . . . , r1) ∈
(R+)

n
. Eventually, one of the types will fixate, yielding∑

j∈[n]

f j
G,r′ = 1. (116)

Since each fitness is equal and the permutation was taken u.a.r., we have for any type j ∈ [n]:
f j
G,r′ = 1

n
. In particular, fk

G,r′ = 1
n
. Since r1 = . . . = rk, we can obtain the k-type Moran

process from the n-type process above by mapping types k + 1, . . . , n to type 1. Since we
took an arbitrary permutation of V as the initial state, the remapped type k-process is indeed
initialised as required in Definition 3. Since type k is not remapped, we still have in the type
k process : fk

G,r = 1
n
, showing claim (ii).

We now prove claim (iii). In fact, the requirement could be relaxed to r being non-increasing
and rk−1 > rk. We require some permutations of the types.20 and define the Moran processes

Ma := {σ̃a
t | t ∈ R≥0} with non-increasing fitness vector ra := r

M b := {σ̃b
t | t ∈ R≥0} with non-decreasing fitness vector rb := (rk, . . . , r1)

M c := {σ̃c
t | t ∈ R≥0} with non-decreasing fitness vector rc := (rk, rk−1 . . . , rk−1)

Md := {σ̃d
t | t ∈ R≥0} with increasing fitness vector rd := (rk, rk−1)

M e := {σ̃e
t | t ∈ R≥0} with decreasing fitness vector re := (rk−1, rk),

where M b is obtained from Ma by inverting the order of the types, i.e. type i maps to type
k − i + 1 for any i ∈ [k]. M c is obtained from M b by increasing the fitnesses of types 3, . . . , k.
Md is obtained from M c by realising that types 2, . . . , k have the same fitness, so all ypes
2, . . . , k get mapped to type 2. M e is obtained from Md by flipping types. Since rk−1 > rk by
assumption, rd is indeed increasing and re decreasing. Except for the M b to M c mapping, each

19In the notation of [1], the constant depends only on r, which is in our case rk/rk−1. For more
details, see Theorem 2 of [1].

20The reason for this rather extensive notation is that r is non-increasing and our previous theorems
work only for r being non-decreasing. Indeed, this leads to a notational overhead in this and only this
section. In all other proofs, it is a very convenient convention that simplifies their proof to a great
extend without limiting their scope.
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type has the same fitness as the type that it gets mapped to in the new Moran process. We can

thus just “trace” the types through the mapping to obtain e.g . (σ̃a
t )−1 (i) =

(
σ̃b
t

)−1
(k − i + 1)

for all i ∈ [k] at every point in time t ∈ R≥0.
For the M b to M c mapping, we can apply Theorem 30 with y := 1 since rb is non-decreasing

and rb1 = rc1, and obtain by inductive application for every point in time t ∈ R≥0:(
σ̃b
t

)−1
(1) ⊆

(
σ̃c
t

)−1

(1). (117)

Tracing type k in the initial Markov chain Ma until M e and applying eq. (117), we have for
every point in time t ∈ R≥0:

(σ̃a
t )−1 (k) ⊆ (σ̃e

t )
−1 (2). (118)

Thus, whenever type k fixates in process Ma, type 2 must fixate in process M e as well, yielding

fk
G,ra ≤ f 2

G,re . (119)

Process M e is simply the 2-type process and we can normalise its fitness to (1, rk
rk−1

). Since

rk−1 > rk, this is equivalent to the first case in Theorem 2 of [1], yielding

fk
G,r = fk

G,ra (by def of Ma)

≤ f 2
G,re (by eq. (119))

≤ 1

nC
(by Theorem 2 of [1])

for every C > 0 and |G| > nrk/rk−1
, for some constant nrk/rk−1

depending only on rk
rk−1

as in

Theorem 2 of [1], concluding the proof of case (iii).

Theorem 31 gave a lower bound on the fixation probability of the strongest mutant, fk
G,r,

which is independent of k. We can thus regard r now as a parameter, to get an FPTRAS for
p-MoranMax in Main Theorem 5. Since Theorem 31 has the caveat requiring the graph to
be sufficiently large, we introduce Algorithm 2 to also deal with small graphs.

Algorithm 2 (N, T ): Approximating fk
G,r in the Moran process, where N, T are functions on

(0, 1)× N× R∗ × N→ N
Input: Graph G, fitness vector r, and error tolerance ε ∈ (0, 1), where n := |G|, k := |r|
Output: Approximation of fk

G,r

1: if n > nrk/rk−1
then ▷ For sufficiently large G

2: fk
G,r ← Algorithm 1(N, T ) on input G, r, j := k ▷ Simulate the Markov chain

3: return fk
G,r

4: else ▷ For small G
5: fk

G,r ← Find exact solution for fk
G,r ▷ “Brute-Force”, see details in proof.

6: return fk
G,r

7: end if

Main Theorem 5 (restated). p-MoranMax has an FPTRAS.

Proof. We show that Algorithm 2 with

N : (ε, n, r, j) 7→
⌈

2−1ε−2 n2

log2 n
ln(16)

⌉
(120)
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T : (ε, n, r, j) 7→
⌈

rk
(rk − rk−1)

⌉
(n + 1)n38 (N(ε, n, r, j))2 , (121)

is an FPTRAS for p-MoranMax and abbreviate the functions’ values by N̂ , T̂ . Note that
both N̂ , T̂ are well-defined, positive integers since by Definition 1, r is strictly increasing and
positive.
We first focus on the n > nrk/rk−1

case. For correctness, the analysis proceeds as in the proof
of Main Theorem 4. The difference is in the application of the Chernoff bound (eq. (79)) where
we get instead for any ε > 0

P
[∣∣p− fk

G,r

∣∣ > εfk
G,r

]
≤ 2 exp

(
−2ε2

(
fk
G,r

)2
N̂
)
≤ 1

8
(122)

where we used in the last step that fk
G,r > logn

n
(Theorem 31) and the definition of N̂ =

N(ε, n, r, j) (eq. (120)).
Further, the probability that type k has not reached absorption in a single simulation within

T̂ /N̂ steps is by Corollary 14

P
[
τk ≥ T̂ /N̂

]
≤ N̂

T̂

rk
(rk − rk−1)

(n + 1)n3 ≤ 1

8N̂
, (123)

where the last step followed by eq. (121).
The probability that all simulations together take more than T̂ steps is bounded by the

probability that any of the N̂ many simulations takes more than T̂ /N̂ steps, which is by a
union bound at most 1

8
. Thus, with probability at least 3

4
, the algorithm returns a value within

a factor 1± ε of fk
G,r.

It remains to show that the running time is bounded by a polynomial in the size of the
input and 1/ε. For n > nrk/rk−1

, recall that by definition of Moran-r, r and thereby k := |r|
is assumed to be constant and thereby not part of the input. By Lemma 24, the running time
is in

O
(
T̂ · k · log n + n2

)
. (124)

We have by definition for some constant C

T̂ = T (ε, n, r, j) ≤ rk
rk − rk−1

ε−4 · C n8

log4 n
, (125)

so that the running time is indeed bounded by

C
n8

log3 n︸ ︷︷ ︸
p1(n)

· ε−4︸︷︷︸
p2(1/ε)

· k rk
rk − rk−1︸ ︷︷ ︸

g(r)

. (126)

Hence, we have indeed an FPTRAS.
For n ≤ nrk/rk−1

, we just calculate fk
G,r exactly, e.g . using techniques from Section 1.2. The

running time vanishes in the function g(r), since nrk/rk−1
depends only on rk, rk−1.

By allowing for a slightly worse lower bound, we get a lower bound on fk
G,r that holds for

any non-decreasing fitness vector r (as opposed to strictly increasing) and get guarantees for
graphs of any order, so that we do not have to deal with nrk/rk−1

:

Corollary 32. For the (continuous time) k-type Moran process for any k ≥ 2 with non-
decreasing fitness vector r ∈ (R+)k on any graph G = (V,E), we have

fk
G,r ≥

1

n
.
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Proof. In the proof of Theorem 31 (i), the difference is that r∗2 := rk/rk−1 ≥ 1, instead of a
strict inequality, so that Corollary 2 of [13] applies, yielding the lower bound 1/n.

Can we turn the FPTRAS even into an FPRAS for p-MoranMax, i.e. in an approximation
algorithm with running time also polynomial in r? The answer is yes, if we make realistic
assumptions. First, we assume that rk is not some artificially large value such as nk. Second,
we assume that rk and rk−1 are not too close. Intuitively, the second assumption makes sense for
the following reason: Suppose we have k = 3 types and start initially with one vertex u of type
2 and one vertex v of type 3. We work on a very symmetric graph such that with sufficiently
high probability, v and u start under the same conditions.21 Then, it will be very hard to
distinguish whether type 2 or type 3 rather wins if r2 is very close to r3, say r2 = r3 − 2−10n,
since they start under very similar conditions. In the k = 2 case, this was not a problem since
type 1 and type 2 always differ significantly in the initial state even when their fitnesses are
close, since type 1 starts with n− 1 vertices. We now make both requirements of rk being not
“too large” and rk−1 being not “too close” to rk formal.

Corollary 33. For

rk ∈ O (poly(n, k))

rk − rk−1 ∈ Ω (poly(n, k))

there is an FPRAS for p-MoranMax.

Note that Corollary 33 applies to many fitness vectors r, such as the very basic, linearly
growing vector r = (1, 2, . . . , k).

Proof of Corollary 33. We choose for Algorithm 1

N : (ε, n, r, j) 7→
⌈
2−1ε−2n2 ln(16)

⌉
T : (ε, n, r, j) 7→

⌈
rk

(rk − rk−1)

⌉
(n + 1)n38 (N(ε, n, r, j))2 .

The claim follows from the n > nrk/rk−1
case in the proof of Main Theorem 5 by noting that

Corollary 32 applies to graphs of any order. For the running time, we have

T (ε, n, r, j) ≤ rk
rk − rk−1

ε−4 · Cn8 (127)

for some constant C. Therefore, by Lemma 24, the overall running time is bounded by

Cn8 log n · k rk
rk − rk−1︸ ︷︷ ︸

p1(n,k)

· ε−4︸︷︷︸
p2(1/ε)

. (128)

By our assumption on rk, rk−1, we have p1(n, k) ∈ poly(n, k). Further, p2(1/ε) ∈ poly(1/ε) so
that we have indeed an FPRAS.

We now have improved a rough lower bound on f j
G,r for j ∈ {2, . . . , k} to a better lower

bound when j = k, which is independent of k. Can we do so for other j? This will be answered
in Section 3.3.

21Graph-theoretically, this can be translated to working on a graph G = (V,E) with a high number
of automorphisms |Aut(G)| and requiring that for u, v chosen u.a.r. from the set of distinct pairs of
V , there is with sufficiently high probability an automorphism φ ∈ Aut(G) such that φ(v) = u
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3.3 Filling the gap: Lower bounds for the fixation probabilities of
types j ∈ {2, . . . , k}

Recall the lower bounds on f j
G,r for j ∈ {2, . . . , k} we have proved so far: For types j ∈

{2, . . . , k}, we have a bound which is exponentially small in k (Lemma 23). We were able to
improve this for j = k to a bound independent of k.

What about the other types 2, . . . , k− 1? We will now provide in Theorem 34 an improved
lower bound for these types. Notably, this bound coincides with Theorem 31 (i) for the one
“extreme” case j = k and with Lemma 23 for the other “extreme” case j = 2. Hence, the
closer j is to k, the better the bound of Theorem 34. We exploit this property when giving an
FPTRAS and FPRAS for the promise problem p-Moran-c-ThFittest in Main Theorem 6
and Corollary 36.

Theorem 34. For every type j ∈ {2, . . . , k} in the k-type Moran process with strictly increasing
fitness vector r on any sufficiently large graph G with maximum degree ∆, we have

f j
G,r > (k − j + 1)!

(
rj
rk

)k−j (
1

∆

)k−j
log n

n2k−2j+1
. (129)

Proof. Let j ∈ {2, . . . , k} be arbitrary. Recall from Definition 3 that

f j
G,r :=

(n− k + 1)!

n!

∑
σ∈Θ

f j
G,r(σ),

where Θ :=
{
σ ∈ Ω

∣∣ ∀j ∈ {2, . . . , k} : |σ−1(j)| = 1
}

. We define the set

Θ′ :=
{
σ ∈ Θ

∣∣ G [
σ−1({j, . . . , k})

]
is connected

}
. (130)

For any σ′ ∈ Θ′ let S := σ′−1({j, . . . , k}). Since G[S] is connected, there must be a spanning
tree T in G[S]. We root this tree at vj, where vj ∈ S is the unique vertex having type σ′(vj) = j.
If the first k − j edges chosen for reproduction form some tree traversal of T starting at its
roots vj, then after k − j steps, all vertices in S have type j, and all other vertices have type
at most j − 1. Call this state σ∗. The probability to reach σ∗ from σ′ within these first k − j
steps is at least (

rj
rk · n ·∆

)k−j

, (131)

by a rough upper bound that the population’s overall fitness is at most rk · n at any point in
time.

We can further bound

f j
G,r(σ∗) ≥ f j

G,r+(σ+), (132)

where r+ ∈ (R+)2 with r+1 := rj−1, r
+
2 := rj and σ+ : V → [2] with (σ+)−1(1) := V \ S and

(σ+)−1(2) := S. This follows by noting that in state σ∗, all vertices are of type {1, . . . , j}, so
that we can truncate r and σ∗ to the j-mutant case and apply Corollary 28, yielding the fitness
vector (rk−1, rj). We can further apply Corollary 8 in [14] (subset domination) and obtain, e.g.
by the third case of Theorem 2 in [1]

f j
G,r+(σ+) ≥ log n

n
. (133)
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We can conclude therefore

f j
G,r :=

(n− k + 1)!

n!

∑
σ∈Θ

f j
G,r(σ) (by Definition 3)

≥ (n− k + 1)!

n!

∑
σ′∈Θ′

f j
G,r(σ′) (since Θ′ ⊆ Θ)

≥ (n− k + 1)!

n!

∑
σ′∈Θ′

(
rj

rk · n ·∆

)k−j

· log n

n
(by eqs. (131) to (133))

> (k − j + 1)!

(
rj
rk

)k−j (
1

∆

)k−j
log n

n2k−2j+1
, (134)

where the last step is due to the following cardinality bound on Θ′: There are at least n−|S|+1
many connected subsets of V of size |S|, since G is connected. How many σ′ ∈ Θ′ are there
for a given S such that S = σ′−1({j, . . . , k}) (recall that |S| = k− j + 1)? There are |S|! many
permutations for assigning to each of the types j, . . . , k a single vertex in S. We must then
assign types 2, . . . , j − 1 to vertices in V \ S, for which there are

(n− |S|)!
(n− |S| − (j − 2))!

possibilities. All remaining vertices get type 1. We can therefore conclude that

|Θ′| ≥ (n− |S|+ 1) · |S|! · (n− |S|)!
(n− |S| − (j − 2))!

(135)

=
(k − j + 1)!(n− k + j)!

(n− k + 1)!
. (136)

Note that this proof uses Corollary 28 and thereby relies on the coupling result (Theorem 26).
We get again a slight loser bound when relaxing r to be non-decreasing, which applies to

graphs of any order.

Theorem 35. For every type j ∈ {2, . . . , k} in the k-type Moran process with non-decreasing
fitness vector r on any graph G with maximum degree ∆, we have

f j
G,r > (k − j + 1)!

(
rj
rk

)k−j (
1

∆

)k−j
1

n2k−2j+1
. (137)

Proof. The proof proceeds as the proof of Theorem 34, except that Corollary 2 in [13] applies
so that Equation (133) becomes

f j
G,r+(σ+) ≥ 1

n
. (138)

We now turn our lower bound into an efficient approximation algorithm for p-Moran-c-
ThFittest.

Main Theorem 6 (restated). p-Moran-c-ThFittest has an FPTRAS.
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Proof. We show that Algorithm 2 with the functions

N : (ε, n, r, j) 7→

⌈
2−1ε−2

(
rk
rj

)2k−2j
1

((k − j + 1)!)2
n6k−6j+2

log2(n)
ln(16)

⌉
(139)

T : (ε, n, r, j) 7→

⌈
k∑

i=j

ri
ri − ri−1

⌉
(n + 1)n38 (N(ε, n, r, j))2 (where k := |r|)

is an FPTRAS for p-Moran-c-ThFittest and abbreviate the functions’ values by N̂ , T̂ . Note
that both N̂ , T̂ are well-defined, positive integers since by Definition 1, r is strictly increasing
and positive.

The n ≤ nrk/rk−1
case is covered as in the proof of Main Theorem 5.

Let n > nrk/rk−1
. For correctness, the analysis proceeds as in the proof of Main Theorem 4.

The difference is in the application of the Chernoff bound (eq. (79)) where we get instead for
any ε > 0

P
[∣∣p− f j

G,r

∣∣ > εf j
G,r

]
≤ 2 exp

(
−2ε2

(
f j
G,r

)2
N̂
)
≤ 1

8
(140)

where we used in the last step that f j
G,r > (k − j + 1)!

(
rj
rk

)k−j (
1
∆

)k−j logn
n2k−2j+1 (Theorem 34)

and the definition of N(ε, n, r, j).
Further, the probability that type k has not reached absorption in a single simulation within

T̂ /N̂ steps is at most

P
[
τj ≥ T̂ /N̂

]
≤ E [τj]

T̂ /N̂
≤ 1

8N̂
, (141)

where we used in the last step that by Corollary 18,

E [τj] ≤
k∑

i=j

ri
ri − ri−1

(n + 1)n3, (142)

and the definition of T (ε, n, r, j).
The probability that all simulations together take more than T̂ steps is bounded by the

probability that any of the N̂ many simulations takes more than T̂ /N̂ steps, which is by a
union bound at most 1

8
. Thus, with probability at least 3

4
, the algorithm returns a value within

a factor 1± ε of fk
G,r.

We now show that the running time is bounded by polynomials p1(n), p2(1/ε) and some
function g(r). Recall that by definition of p-Moran-c-ThFittest, r and thereby k := |r|
are parameters and j ∈ {max(2, k − c + 1), . . . , k}.

Since j ≥ k − c + 1, we have

N̂ =

⌈
ln(16)

2
ε−2

(
rk
rj

)2c−2
1

(c!)2
n6c−4

⌉
(143)

T̂ :=

⌈
k∑

i=k−c+1

ri
ri − ri−1

⌉
(n + 1)n38 (N(ε, n, r, j))2 (where k := |r|)

We have by definition for some constant D

T̂ = T (ε, n, r, j) ≤
k∑

i=k−c+1

ri
ri − ri−1

·
(
rk
rj

)4c−4

ε−4 ·Dn12c−4

log4 n
, (144)
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so that the running time is by Lemma 24 indeed bounded by

D
n12c−4

log3 n︸ ︷︷ ︸
p1(n)

· ε−4

︸︷︷︸
p2(1/ε)

· k
k∑

i=k−c+1

ri
ri − ri−1

·
(
rk
rj

)4c−4

︸ ︷︷ ︸
g(r)

. (145)

Hence, we have an FPTRAS for p-Moran-c-ThFittest.

Under similar assumptions as in Corollary 33, we even get an FPRAS:

Corollary 36. For

∀i ∈ {k − c + 1, . . . , k} : ri ∈ O (poly(n, k))

ri − ri−1 ∈ Ω (poly(n, k))

p-Moran-c-ThFittest has an FPRAS for p-Moran-c-ThFittest.

Proof. We choose in Algorithm 1

N : (ε, n, r, j) 7→

⌈
2−1ε−2

(
rk
rj

)2k−2j
1

((k − j + 1)!)2
n6k−6j+2 ln(16)

⌉
(146)

T : (ε, n, r, j) 7→

⌈
k∑

i=j

ri
ri − ri−1

⌉
(n + 1)n38(N(ε, n, r, j)))2. (where k := |r|)

By the condition on ri, we have for every i ∈ {k − c + 1, . . . , k}

rk
ri
,

ri
ri − ri−1

∈ O (poly(n, k)) , (147)

So that the overall running time is, analogously to Corollary 33, bounded by

Dn12c−4k

k∑
i=k−c+1

ri
ri − ri−1

·
(
rk
rj

)4c−4

︸ ︷︷ ︸
p1(n,k)

· ε−4

︸︷︷︸
p2(1/ε)

(148)

for some constant D. Since p1(n, k) ∈ poly(n, k) by eq. (147), we have indeed an FPRAS for
p-Moran-c-ThFittest.
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4 Martingale approach for the complete graph

We mentioned in the beginning that computing explicit formulas by solving the recurrence
equation is a very tedious procedure and we even doubt that there exist explicit formulas for
the k-type process already on the complete graph Kn. However, Monk, Green, and Paulin [31]
gave martingale proofs for the explicit formula in the 2-type process on Kn. Since this approach
is much more compact than explicitly solving the non-linear recurrence relation, the hope is
to get, at least in special cases, an explicit formula for the fixation probabilities by using a
martingale approach. Monk and Schaik [32] note that

We can consider birth-death processes with more than two competing species, each
with different fitnesses [...]. Whether or not martingale analysis is applicable to any
of these Moran process extensions is an open research question. [...] Finding such
an expectation may be quite laborious or impossible, depending on the complexity of
the stochastic process and the exploitable symmetries in it.

In this section, we answer the above question by giving a martingale for the k-type Moran
process on Kn. This generalises the martingale by Monk, Green, and Paulin [31] from 2 to
any number of k types. Hence, the graph of interest throughout this section is the complete
graph G = Kn.22 Since the complete graph imposes a trivial structure among its vertices, the
state-space can be simplified by only counting the number of vertices per type: We denote for
any state σt : V → [k] by

St :=


∣∣σ−1

t (1)
∣∣

...∣∣σ−1
t (k)

∣∣
 ∈ (N0)

k , (149)

The vector St denotes thus the state at time t, which we index by i ∈ [k]: St,i =
∣∣σ−1

t (i)
∣∣. By

definition, we have at any time t ∈ N≥0: ∑
i∈[k]

St,i = n. (150)

For any t ≥ 0, we can express the state St by its difference to the previous state:

St+1 = St + Xt+1, (151)

where Xt ∈ {−1, 0,+1}k with at most two entries being non-zero and
∑

i∈[k] Xt,i = 0. We

denote by W (S) the population’s overall fitness in state S. Note that by definition of the
Moran process, we have for every t ∈ N, i, j ∈ [k] with i ̸= j and every state S:

P [Xt,i = 1 ∧ Xt,j = −1 | St−1 = S] =
riSi

W (S)

Sj

n− 1
. (152)

Further, Xt is zero if and only if no pair i, j of its components is non-zero:

P [Xt = 0 | St−1] = 1−
∑
i,j∈[k]
i ̸=j

P [Xt,i = 1 ∧ Xt,j = −1 | St−1 = S] . (153)

Let us formalise our definition of S and define a function on S.

22Recall that every graph considered in this work has no self-loops.
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Definition 37. For the vector S defined by S := (|σ−1(1)| , . . . , |σ−1(k)|) for some state σ :
V → [k], we define

f(S) :=
∏
i∈[k]

r−Si
i ,

where ri > 0 is the fitness of type i. If σ = σt, we write St.

We claim that f(S) is a martingale.

Main Theorem 7 (restated). The sequence {f(St) : t ≥ 0} is a martingale with respect to
the sequence {Xt : t ≥ 0}, where we define X0 ≡ 0.

Proof. Let t ∈ N≥0 be arbitrary. Note first that all ri are strictly positive and finite and that
Si ∈ {0, . . . , n} for any i ∈ [n], so that f(St) is bounded and thus E [|f(St)|] <∞.

For every t ∈ N, we have

E [f (St) |X0, . . . ,Xt−1] = E [f (Xt) · f (St−1) |X0, . . . ,Xt−1] (154)

= E [f (Xt) |X0, . . . ,Xt−1] · f (St−1) , (155)

where the first equation follows by basic properties of the exponential function.23 It thus suffices
to show E [f (Xt) |X0, . . . ,Xt−1] = 1. Since Xt is either non-zero at exactly two locations or
0, we have for any state S.

E [f (Xt) |X0, . . . ,Xt−1] (156)

=
∑
i,j∈[k]
i ̸=j

P [Xt,i = 1 ∧ Xt,j = −1 | St−1 = S] · rj
ri

+ P [Xt = 0 | St−1 = S] · 1

(by def. of f(Xt))

=
∑
i,j∈[k]
i ̸=j

riSi

W (S)

Sj

n− 1

rj
ri

+

1−
∑
i,j∈[k]
i ̸=j

riSi

W (S)

Sj

n− 1

 (by eqs. (152) and (153))

This quantity is 1 if and only if∑
i,j∈[k]
i ̸=j

riSi

W (S)

Sj

n− 1

rj
ri

=
∑
i,j∈[k]
i ̸=j

riSi

W (S)

Sj

n− 1
(157)

holds. Multiplying by W (S) · (n− 1) yields∑
i,j∈[k]
i ̸=j

rjSiSj =
∑
i,j∈[k]
i ̸=j

riSiSj (158)

which holds by symmetry of i, j. We can thus conclude that

E [f (St) |X0, . . . ,Xt−1] = f(St−1) (159)

for any t ∈ N, concluding the proof that {f(Sn) : n ≥ 0} is a martingale with respect to the
sequence {Xn : n ≥ 0}.

23More precisely, this step is due to the exponential function being a homomorphism from the
additive group of R to the multiplicative group of R+.
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We define the stopping time

τ := min

t ∈ N0

∣∣∣∣∣∣∣∣∣∣
St ∈



n
0
...
0

 ,


0
n
...
0

 , . . . ,


0
0
...
n




 . (160)

Since |f(St)| is bounded for every t ≤ τ , the optional stopping theorem applies, yielding

E [f(Sτ )] = E [f(S0)] . (161)

Since Sτ is with probability f j
G,r the vector n · ej, where ej denotes the j-th basis vector in the

standard basis of Rk for every type j ∈ [k], eq. (161) translates into∏
j∈[k]

r
−S0,j

j =
∏
j∈[k]

f j
G,r · r

−n
j . (162)

The martingale yields thus in addition to the trivial equation∑
j∈[k]

f j
G,r = 1 (163)

a second equation to determine the fixation probabilities, of which we have k many.

4.1 Applying the martingale: Solving for the fixation probabilities
in a special case

We now demonstrate the usefulness of the martingale in the simple case where all invading
mutations have an equal fitness advantage, i.e. r2 = . . . = rk. We let each of the types start
with any number of vertices initially so that the initial state is an arbitrary vector S0 ∈ Nk

with the only requirement
∑

j∈[k] S0,j = n. We need the following lemma.

Lemma 38. For the k-type Moran process on G = Kn with fitness r satisfying r1 < r2 = r3 =
. . . = rk, and any starting state S0, we have

f i
G,r

f j
G,r

=
S0,i

S0,j

.

for every i, j ∈ {2, . . . , k}.

Proof. Consider the process where each of the l := S0,2 + S0,3 + . . . + S0,k many type 2, . . . , k
vertices start with their own type and enumerate those by 1, . . . , l. We remap the former type
1 to type l + 1, and are not interested in it for the remainder of this prove anymore.

Consider the event
Ax := “The new type x fixates”

for any x ∈ [l]. All of these l many new types have the same fitness (namely r2 = . . . = rk), so
that their fixation probabilities are equal:

∀x, y ∈ [l] : P [Ax] = P [Ay] .

Since eventually one and only one type fixates in the Moran process, the events Ax,Ay are
mutually exclusive for every x, y ∈ [l], x ̸= y. Therefore, for any initial type i ∈ {2, . . . , k} we
have

f i
G,r = S0,i · P [A1] , (164)
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since type i fixates if and only if any of its S0,i initial vertices fixates. Since these events are
mutually exclusive and all equal to A1 as argued above, we can simply multiply S0,i · P [A1].

The same argument holds for type j ∈ [k], so that we get

f i
G,r

f j
G,r

=
S0,i · P [A1]

S0,j · P [A1]
=

S0,i

S0,j

. (165)

From Lemma 38 we get k − 2 many equations:

∀j ∈ {2, . . . , k − 1} :
f j
G,r

f j+1
G,r

=
S0,j

S0,j+1

. (166)

Together with eqs. (162) and (163) we thus have k equations for the k unknowns f 1
G,r, . . . , f

k
G,r.

Solving this non-singular system of equations yields the following exact formulas for the fixation
probabilities.

Corollary 39. For the k-type Moran process on G = Kn with fitness r satisfying r1 < r2 =
r3 = . . . = rk, and every starting state σ0 : V → [k], the fixation probabilities are

f 1
G,r(σ0) =

(
r1
r2

)n

−
(

r1
r2

)l

(
r1
r2

)n

− 1
,

∀j ∈ {2, . . . , k} : f j
G,r(σ0) =

∣∣σ−1
0 (j)

∣∣ (( r1
r2

)i+j

− 1

)
l
((

r1
r2

)n

− 1
) ,

where l :=
∑k

i=2

∣∣σ−1
0 (i)

∣∣.
In this section, we have thus resolved a question posed by Monk and Schaik by providing a

martingale for any number of k ≥ 2 types. We have further demonstrated how it can be used in
a particular instance of the Moran process, but note that the martingale’s usefulness depends
on having further equations to calculate the k unknown fixation probabilities. This leads to
further research questions described in the subsequent Section 5.
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5 Outlook

In this dissertation, we generalised the spatial Moran process to any number of k mutants
and provided an FPRAS for Moran-r, the analogue computational problem which has been
efficiently approximated in the 2-type process.

We further introduced the parameterised computational problem p-Moran, which treats
the fitness vector r and its dimension, k, as general parameters. We are able to approximate
this problem in the case of p-MoranMax as well as in the promised version p-Moran-c-
ThFittest by FPTRASes, and in some instances even by FPRASes independent of k. At
the heart of these algorithms lies a stochastic coupling which provides bounds on the fixation
probabilities in a very general setting and is thus interesting on its own; as a narrow subcase,
we applied it to derive bounds given by Ferreira and Neves in recent work. We motivate further
research into the parameterised problem p-Moran for weak mutations: Does p-Moran have
an FPTRAS if j = 2?

In Section 2.3, we proved that the present techniques do not yield asymptotic speed-up if
only active steps are simulated, distinguishing the k = 2 from the k > 2 type Moran process.
Further research could ask: Do other potential functions provide a speedup? One could try a
potential function of the form

Ψ′(σ) :=
∑
j∈[k]

∑
v∈σ−1(j)

1

deg(v)
· p(j), (167)

where p(j) is some function in j. We suggest p(j) to be monotonically increasing to give more
weight to the highest mutation type while maintaining p(k) small enough to keep a small bound
in Lemma 12.

In Section 4, we gave a martingale for every k-type Moran process, thereby solving an open
problem by Monk and Schaik. We motivate further research into finding more equations which
can be used in combination with our martingale (Definition 37) to give exact formulas for the
fixation probabilities on the complete graph without restrictions on the fitness r.
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[8] Béla Bollobás, Paul Smith, and Andrew Uzzell. Monotone Cellular Automata in a Random
Environment. Combinatorics, Probability and Computing, 24(4):687–722, July 2015. doi:
10.1017/S0963548315000012.

[9] Maury Bramson and David Griffeath. On the Williams-Bjerknes tumour growth model: II.
Mathematical Proceedings of the Cambridge Philosophical Society, 88(2):339–357, Septem-
ber 1980. doi:10.1017/S0305004100057650.

[10] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Martin A. Nowak. Faster monte-carlo
algorithms for fixation probability of the moran process on undirected graphs. In 42nd
International Symposium on Mathematical Foundations of Computer Science, volume 83
of LIPIcs, pages 61:1–61:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.MFCS.2017.61.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/
books/introduction-algorithms.

[12] Marek Cygan, Fedor V. Fomin,  Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer
International Publishing, Cham, 2015. doi:10.1007/978-3-319-21275-3.

48

https://doi.org/10.1002/rsa.20890
https://doi.org/10.1002/path.4157
https://doi.org/10.1017/S0016672300031748
https://doi.org/10.1371/journal.pcbi.0030225
https://doi.org/10.1093/sysbio/syu081
http://arxiv.org/abs/1406.6680
http://arxiv.org/abs/1406.6680
http://arxiv.org/abs/1406.6680
https://doi.org/10.1017/S0963548315000012
https://doi.org/10.1017/S0963548315000012
https://doi.org/10.1017/S0305004100057650
https://doi.org/10.4230/LIPIcs.MFCS.2017.61
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1007/978-3-319-21275-3


[13] Josep Dı́az, Leslie Ann Goldberg, George B. Mertzios, David Richerby, Maria Serna, and
Paul G. Spirakis. Approximating Fixation Probabilities in the Generalized Moran Process.
Algorithmica, 69(1):78–91, May 2014. doi:10.1007/s00453-012-9722-7.

[14] Josep Dı́az, Leslie Ann Goldberg, David Richerby, and Maria Serna. Absorption time of
the Moran process. Random Structures & Algorithms, 49(1):137–159, 2016. doi:10.1002/
rsa.20617.

[15] Khanh N. Dinh, Seth J. Corey, and Marek Kimmel. Application of the Moran Model
in Estimating Selection Coefficient of Mutated CSF3R Clones in the Evolution of Severe
Congenital Neutropenia to Myeloid Neoplasia. Frontiers in Physiology, 11:806, September
2020. doi:10.3389/fphys.2020.00806.

[16] Rod G. Downey and Michael R. Fellows. Fixed-Parameter Tractability and Completeness
I: Basic Results. SIAM Journal on Computing, 24(4):873–921, August 1995. doi:10.

1137/S0097539792228228.

[17] Rick Durrett, Thomas Liggett, and Yuan Zhang. The contact process with fast voting.
Electronic Journal of Probability, 19(none), January 2014. doi:10.1214/EJP.v19-3021.

[18] Juan Fernández-Gracia, Krzysztof Suchecki, José J. Ramasco, Maxi San Miguel, and
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Appendices

A Proof for the subset stochastic domination result

We now prove the following stochastic domination result.

Theorem 30 (restated). For any k ≥ 2 and y ∈ [k], let M̃ := {σ̃t | t ∈ R≥0} be a k-type
continuous time Moran process with non-decreasing fitness vector r on a graph G = (V,E).
Let M̃ ′ := {σ̃′

t | t ∈ R≥0} be any other k-type continuous time Moran process on G with the
unordered fitness vector r′ such that ∀i ∈ {1, . . . , y} : r′i = ri, ∀i ∈ {y + 1, . . . , k} : r′i ≤ ry+1.
Visually, this translates to

r′ =



r′1
...
r′y
r′y+1
...
r′k



= r1
...

= ry
≤ ry+1

...
≤ ry+1.

(168)

Then there exists a coupling between M̃ and M̃ ′ such that at any point in time t ∈ R≥0,

∀j ∈ {1, . . . , y} : σ̃−1
t (j) ⊆ σ̃′−1

t (j) (169)

implies

∀j ∈ {1, . . . , y} : σ̃−1
t+dt(j) ⊆ σ̃′−1

t+dt(j), (170)

where dt is the time it takes for the first reproduction to happen in M̃ or M̃ ′ after time t.

Proof of Theorem 30. We proceed as in the proof of Theorem 26 by constructing this coupling
explicitly. We point the necessary modifications to the proof of Theorem 26 out.

The random variables tv, t
1
v, t

2
v, clock set C, and dt := minC are defined as in Theorem 26.

Both chains evolve as in Theorem 26. Suppose eq. (169) holds.
We now show that eq. (170) indeed holds. Suppose first that both chains evolve syn-

chronously. It suffices to show that for all j ∈ {1, . . . , y} (i) if v ∈ σ̃−1
t (j) reproduces to w, then

also w ∈ σ̃′−1
t+dt(j) as well as (ii) if w /∈ σ̃′−1

t+dt(j) dies, then also w /∈ σ̃−1
t+dt(j).

Let j ∈ {1, . . . , y} be arbitrary. For (i), suppose v ∈ σ̃−1
t (j) reproduces to w. Since σ̃−1

t (j) ⊆
σ̃′−1
t (j) by assumption (eq. (169)), we must have v ∈ σ̃′−1

t (j). Since M̃ ′ evolves as well, we have
w ∈ σ̃′−1

t+dt(j), concluding case (i). For (ii), suppose w /∈ σ̃′−1
t+dt(j) dies. Thus, by the evolution

of M̃ ′, we must have v /∈ σ̃′−1
t (j). Since σ̃−1

t (j) ⊆ σ̃′−1
t (j) (eq. (169)), we must have v /∈ σ̃−1

t (j).
Since M̃ evolves as well, this means w /∈ σ̃−1

t+dt(j).
Suppose now that the chains do not evolve synchronously. To that end, we define the

partitions Si,<, Si,>, Si,= for i ∈ [k] as in Theorem 26. We perform a case distinction on the
vertex v chosen for reproduction.

Case v ∈ Si,< for i ∈ {1, . . . , y}. Thus, rv < r′v. We show that this case is impossible. Since
σ̃t(v) = i ≤ y, we must have by eq. (169) σ̃′

t(v) = i. Thus, rv = r′v, contradicting rv < r′v.

Case v ∈ Si,< for i ∈ {y + 1, . . . , k}. Note that if y = k, this case holds trivially. Otherwise,
we show that this case is impossible. We have

ry+1 ≤ rv (since y + 1 ≤ σ̃t(v) and r is non-decreasing)

< r′v (by def. of Si,<)

However, any fitness in r′ is by definition at most ry+1, contradicting ry+1 < r′v.
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Case v ∈ Si,> for i ∈ {1, . . . , y}. Thus, rv > r′v. We show that this case is impossible. Since
σ̃t(v) = i ≤ y, we must have by eq. (169) σ̃′

t(v) = i. Thus, rv = r′v, contradicting rv > r′v.

Case v ∈ Si,> for i ∈ {y + 1, . . . , k}. Note that if y = k, this case holds trivially. Since we
assume that only one chain evolves and since rv > r′v, only M̃ evolves. Since i > y, have
v /∈ σ̃−1

t ({1, . . . , y}), allowing us to conclude for any j ∈ {1, . . . , y}:

σ̃−1
t+dt(j) ⊆ σ̃−1

t (j) (since v /∈ σ̃−1
t ({j}) reproduces.)

⊆ σ̃′−1
t (j) (by assumption eq. (169))

= σ̃′−1
t+dt(j). (since M̃ ′ does not evolve)

We can therefore conclude that eq. (170) does indeed hold at time t + dt.
The proof that we constructed indeed faithful copies of M̃ , M̃ ′ is identical to the faithfulness

proof of Theorem 26.

B Ferreira and Neves’s bounds on Kn with 3 types: A

corollary from Theorem 26

Ferreira and Neves analyse the k = 3 case on the complete graph and obtain bounds for the
fixation probabilities [19]. These bounds follow just as a very niche case of Theorem 26. This
section section provides these bounds as a corollary of Theorem 26, demonstrating the theorem’s
generality.

Corollary 40. In the 3-type Moran process on the complete graph G = Kn with non-increasing
fitness vector r, we have for every state σ : V → [3]

1− (r3/r1)
|σ−1(1)|

1− (r3/r1)n
≤ f 1

Kn,r ≤
1− (r2/r1)

|σ−1(1)|

1− (r2/r1)n

1− (r3/r2)
|σ−1(2)|

1− (r3/r2)n
≤ f 2

Kn,r ≤
1− (r1/r2)

|σ−1(2)|

1− (r1/r2)n

1− (r2/r3)
|σ−1(3)|

1− (r2/r3)n
≤ f 3

Kn,r ≤
1− (r1/r3)

|σ−1(3)|

1− (r1/r3)n
.

Proof. We prove the case of f 1
Kn,r

here. The other cases follow analogously. For the first
inequality, adopting the notation from Theorem 26, we set x = y = 1 and r′ := (r1, r3, r3).
Both chains M̃ := {σ̃t | t ∈ R≥0} and M̃ ′ := {σ̃′

t | t ∈ R≥0} start with initial state σ: σ̃0 := σ,
σ̃′
0 := σ. Applying Theorem 26 inductively, we get

∀t ≥ 0 : σ̃−1
t (1) ⊇ σ̃′−1

t (1) (171)

and thereby

f 1
Kn,r ≥ f 1

Kn,r′ , (172)

which holds in both the discrete and continuous time processes, as argued in Section 3.2.1.
Since we have r′2 = r′3, we can in M̃ ′ simply remap type 3 to type 2, without changing the
behaviour of type 1. We thus have a 2-type Moran process, with fitness vector (r1, r3) and
|σ−1(1)| many initial type-1 vertices. The type 2-process on Kn has been well studied, so that
we know e.g . from [13] that in this process, type 1 fixates with probability

1− (r3/r1)
|σ−1(1)|

1− (r3/r1)n
, (173)
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yielding by Equation (172)

1− (r3/r1)
|σ−1(1)|

1− (r3/r1)n
≤ f 1

Kn,r. (174)

For the upper bound on f 1
Kn,r

, take in Theorem 26 the fitness of M̃ to be (r1, r2, r2) and the

fitness of M̃ ′ to be (r1, r2, r3). We see that M̃ can just be seen as a 2-type process where type
1 fixates with probability

1− (r2/r1)
|σ−1(1)|

1− (r2/r1)n
, (175)

so that an inductive application of Theorem 26 yields

f 1
Kn,r ≤

1− (r2/r1)
|σ−1(1)|

1− (r2/r1)n
. (176)

This shows the lower and upper bound on f 1
Kn,r

.
The proofs for f 2

Kn,r
and f 3

Kn,r
are symmetric; we take x = y = 2 and x = y = 3 respectively

in the application of Theorem 26.

Corollary 40 are indeed the bounds from Ferreira and Neves (Theorem 4 in [19]). Note that
our Theorem 26, in contrast, works for arbitrary graphs and arbitrary number of mutants.

C Connection of the Lieberman, Hauert, and Nowak

model to the biased voter model and the Williams-

Bjerknes tumour growth model

In this section, we will consider the Moran process generalised to continuous time (Section 3.2.1).
This has been done for k = 2 by Diaz et al . to establish a coupling theorem [14]. We show how
closely related the spatial Moran process proposed by Lieberman, Hauert, and Nowak [28] is
to the biased voter and Williams-Bjerknes model.

The Williams-Bjerknes process and biased voter model The Williams-Bjerknes pro-
cess is the spin system on the finite 2-dimensional grid graph G, whose vertices can be in either
state 1 or state 2. If we denote by St the set of type 2-vertices at time t ∈ R, then (St)t≥0 is
the Markov process whose jump rates are given by24

S 7→ S ∪ {v} at rate κ · |S ∩N(v)|
S 7→ S \ {v} at rate |S ∩N(v)|

(177)

for every v ∈ V and any constant κ > 1. This has been described by Williams and Bjerknes in
1972 [38] and further formalised by Bramson and Griffeath [9]. For G being the infinite sized
is the d-dimensional lattice (d ≥ 1), this model is known as the biased voter model, introduced
independently by Schwartz in 1977 [35]. The difference in the underlying graph stems from
Williams and Bjerknes considering tumour growth and Schwartz working on interacting particle
systems.

24We use the convention that “rate 0” means “not happening”.
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To see the connection to the model introduced by Lieberman, Hauert, and Nowak, let G
be the d-dimensional lattice for any d ≥ 1. Thus, each vertex has degree 2d. Consider the
2-type continuous time Moran process with fitness vector (2d, r · 2d) for any r > 1 on G.25 By
the definition of the continuous time Moran process, reproduction happens from u to v at rate
rσ(v)·2d

2d
= rσ(v) for any {u, v} ∈ E. If we denote by S the set of type-2 vertices, we have thus

S 7→ S ∪ {v} at rate r · |S ∩N(v)|
S 7→ S \ {v} at rate |S ∩N(v)|

(178)

which is equivalent to (177) with r = κ. Since the Moran process as proposed by Lieberman,
Hauert, and Nowak in 2005 is just the embedded discrete time Markov chain of the process
considered above, we conclude that for regular graphs, their model is just the discrete version
of the biased voter model generalised to finite graph.

D Code to simulate the k-type Moran process

In this section, we provide code in C++ to simulate the k-type Moran process on every connected
graph. In Appendix E, we use this code to provide simulation results on the complete graph
for different values of k.

1 // Simulating the Moran process with k types

2 // Author: Tassilo Schwarz

3

4 #include "simulation.hpp"

5

6 /**

7 Simulate one run of the k-type Moran process on a connected graph of order

n.↪→

8 @param fitness r_1, ..., r_k: double vector of fitness of each of the k

types↪→

9 @param number_initial_types number of each type in the uar initialisation.

Must sum to n.↪→

10 @param degrees array of the vertex degrees

11 @param adjacency_list adjacency list (in the algorithmic sense) of the

graph, encoded as a n x n array (in the data structure sense). This

provides both algorithmic and data structural speedup.

adjacency_list[i][j] for j>= degrees[i] are ignored.

↪→

↪→

↪→

12 @param neighbour_distr List of uniform distribution over neighbours, as

returned by function @b convert_graph↪→

13 @returns type of fixated mutant

14 */

15 int simulate(array<double,k> fitness,array<int,k>

&number_initial_types,array<int,n> &degrees,array<array<int, n>, n>

&adjacency_list,array<uniform_int_distribution<>,n> &neighbour_distr){

↪→

↪→

16 // size of graph must be bigger than number of types

17 assert(n>k);

18

19 // verify that number_initial_types is well-defined.

25We normalised the first component of the fitness vector to 2d, as described in Section 1.1.
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20 assert(accumulate(begin(number_initial_types), end(number_initial_types),

0)==n);↪→

21

22 // the pseudo random generator

23 random_device rd;

24 mt19937 gen(rd());

25

26 array<int,n> sigma; // the type mapping, representing the current state.

27

28 // initialise the state by selecting number_initial_types of each type

29 int init_counter=0;

30 for(int j=0;j<k;j++){

31 for(int i = 0;i<number_initial_types[j];i++){

32 sigma[init_counter++]=j;

33 }

34 }

35 shuffle ( begin(sigma),end(sigma) ,gen);

36

37 // fitness of each vertex

38 array<double,n> fitness_per_vertex;

39 for(int i=0;i<n;i++){

40 fitness_per_vertex[i] = fitness[sigma[i]];

41 }

42

43 // #vertices per each type

44 array<int,k> type_counter;

45 for(int i=0;i<k;i++){

46 type_counter[i]=number_initial_types[i];

47 }

48

49 // weighted types. i.e. #type-i * r_i for any i in [k]

50 array<double,k> weighted_types;

51 for(int i=0;i<k;i++){

52 weighted_types[i]=number_initial_types[i]*fitness[i];

53 }

54

55 // 2d array of vertices of each type at a given time. Used for

efficiency.↪→

56 array<array<int,n>,k> type_lists={{-1}};

57 array<int,k> type_lists_idx={0};

58 for(int i=0;i<n;i++){

59 type_lists[sigma[i]][type_lists_idx[sigma[i]]++]=i;

60 }

61

62 // check that updates make sense

63 for(int i=0;i<k;i++){

64 assert(type_lists_idx[i]==type_counter[i]);

65 }

66

67 // evolve the process until it converged
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68 while(true){

69 // reproduce v to u.

70

71 // 1. select v

72 discrete_distribution<int> distr_v(begin(fitness_per_vertex),

end(fitness_per_vertex));↪→

73 int reproduction_v = distr_v(gen);

74

75 // 2. select u

76 int target_u =

adjacency_list[reproduction_v][neighbour_distr[reproduction_v](gen)];↪→

77

78 // 3. update the state, if changed

79 if(sigma[target_u] != sigma[reproduction_v]){

80 int reproduction_v_type = sigma[reproduction_v];

81 int old_type_u = sigma[target_u];

82

83 type_counter[reproduction_v_type]++;

84 assert(type_counter[reproduction_v_type]<=n);

85

86 type_counter[old_type_u]--;

87 assert(type_counter[old_type_u] >=0);

88

89 sigma[target_u] = reproduction_v_type;

90

91 fitness_per_vertex[target_u] = fitness[reproduction_v_type];

92

93 // terminate, if fixated

94 if(type_counter[sigma[reproduction_v]]==n){

95 return sigma[reproduction_v];

96 }

97 }

98 }

99 return -1;

100 }

101

102 /**

103 Converts and adjacency matrix to a degree list and adjacency list

104 @param adjacency_matrix Reference to the n x n binary adjacency matrix

(input)↪→

105 @param degrees Reference to list of degrees (output)

106 @param adjacency_list Reference to list adjacency list, encoded as a n x n

array for efficiency (output)↪→

107 @param neighbour_distr List of Uniform[degrees[i]] distributions, for i in

[n]. The i-th distribution is uniform on 0...degrees[i]-1 and thus can

be used to sample from neighbours

↪→

↪→

108 */

109 void convert_graph(array<array<int, n>, n> &adjacency_matrix,array<int, n>

&degrees,array<array<int, n>, n>

&adjacency_list,array<uniform_int_distribution<>,n> &neighbour_distr){

↪→

↪→
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110

111 for(int i=0;i<n;i++){

112 int list_idx=0;

113 int degree_cnt=0;

114 for(int j=0;j<n;j++){

115 if(adjacency_matrix[i][j]==1){

116 adjacency_list[i][list_idx++]=j;

117 degree_cnt++;

118 }

119 }

120 degrees[i]=degree_cnt;

121 neighbour_distr[i]=uniform_int_distribution<>(0,degree_cnt-1);

122 }

123 }

124

125

126 /**

127 Simulates N runs of the Moran process on a connected graph.

128 @param N number of simulations

129 @param fitness fitnesses r_1, ... , r_k

130 @param number_initial_types number of each type initially. Must sum to n.

131 @param simulation_results Vector storing #fixations per type

132 */

133 void simulate_N_runs(int N,array<double,k> fitness,array<int,k>

&number_initial_types,array<array<int, n>, n>

&adjacency_matrix,array<int,k> &simulation_results){

↪→

↪→

134 simulation_results = {0};

135

136

137 array<int,n> degrees={0};

138 array<array<int, n>, n> adjacency_list={0};

139 array<uniform_int_distribution<>,n> neighbour_distr;

140

141 convert_graph(adjacency_matrix, degrees, adjacency_list,neighbour_distr);

142

143 for(int i=0;i<N;i++){

144 simulation_results[simulate(fitness,number_initial_types,degrees,

adjacency_list,neighbour_distr)]++;↪→

145 if(i%(N/20)==0 && i>0){

146 cout<<"["<<setw(2)<<"] progress: "<<1.0*i/N<<endl;

147 }

148 }

149 }

The associated header file “simulation.hpp” is as follows.

1 // Simulating the Moran process with k types. Header file.

2 // Author: Tassilo Schwarz

3

4 #ifndef simulation_hpp

5 #define simulation_hpp
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6

7 #include <stdio.h>

8 #include <iostream>

9 #include <stdlib.h> /* srand, rand */

10 #include <time.h> /* time */

11 #include <iomanip>

12 #include <map>

13 #include <algorithm> // random_shuffle

14 #include <random>

15 #include <array>

16 #include <list>

17 #include <string>

18

19 #define k 15 // the number of mutants

20 #define n 1000 // the number of nodes. n has to be greater than k

21

22 using namespace std;

23

24 int simulate(array<double,k> fitness,array<int,k>

&number_initial_types,array<int,n> &degrees,array<array<int, n>, n>

&adjacency_list,array<uniform_int_distribution<>,n> &neighbour_distr);

↪→

↪→

25 void convert_graph(array<array<int, n>, n> &adjacency_matrix,array<int, n>

&degrees,array<array<int, n>, n>

&adjacency_list,array<uniform_int_distribution<>,n> &neighbour_distr);

↪→

↪→

26 void simulate_N_runs(int N,array<double,k> fitness,array<int,k>

&number_initial_types,array<array<int, n>, n>

&adjacency_matrix,array<int,k> &simulation_results);

↪→

↪→

27 #endif /* simulation_hpp */

E Simulating the k-type Moran process

Since the primary focus of this dissertation is of theoretical nature, this section should rather
be understood as a demonstration of the k-type process than as a simulation-based research
work. For the latter, more simulation runs would be needed.

The code in Appendix D can be used to simulate the k-type Moran process on every con-
nected graph of interest to observe empirical values for the fixation probabilities. We did so
on the complete graph with different values for k, and chose for every type j ∈ [k] the fitness
value 1 + (j − 1) · 0.05. We conducted 5000 simulations per value of k and plotted the fixation
probability of the three strongest types as well as of the weakest type in Figure 3. While f 1

decays, fk grows, which would also be our understanding from the 2-type process. We see that
the other, almost strongest types also grow slightly. Intuitively, this behaviour can be explained
as follows: Type 1 has no fitness advantage, its only advantage stems from occupying n− k+ 1
vertices initially. However, as k grows, this advantage declines. The fixation probabilities of
types k, k−1, k−2 increases, since their fitness values increase with growing k. It is important
to note that those results hold only for small values of k compared to n.
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Simulation of the k-type Moran process on K1000

Figure 3: Simulation of the k-type Moran process on the complete graph with n = 1000 vertices.
For each k ∈ {2, . . . , 15}, the process was simulated 5000 times using the code in Appendix D.
The fitness values for each of the types 1, 2, . . . , k were chosen to be 1.0, 1.05, . . . 1+(k−1) ·0.5.
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