PDE Workshop in Stability Analysis for Nonlinear PDEs

18th August 2022

Computing power law equilibrium measures

Timon Salar Gutleb Oxford Centre for Nonlinear PDE Mathematical Institute, University of Oxford

Talk structure

- 1. Banded spectral methods
- 2. Computing power law equilibrium measures
- 3. Numerical experiments

1. Banded spectral methods

Core idea of spectral methods

Obtain numerical solutions to mathematical problems by approximating

functions in simpler basis function spaces.

Core idea of spectral methods

Obtain **numerical** solutions to mathematical problems by approximating

functions in simpler basis function spaces.

Core idea of spectral methods

obtain numerical solutions to mathematical problems by approximating

functions in simpler basis function spaces.

Core idea of spectral methods

obtain numerical solutions to mathematical problems by approximating

functions in **simpler** basis function spaces.

- Monomials $\{x^0, x^1, x^2, ...\}$
- Fourier series $\{e^{i2\pi nx/P}\}$
- Orthogonal Polynomials

in 1D: e.g. Jacobi, Hermite, Laguerre in 2D: e.g. Proriol (►), Zernike (●)

A primer on sparse spectral methods

A set of polynomials P_n i(x) thogonal w.r.t. a weight if w(x) $\int_\Omega w(x) P_n(x) P_m(x) \mathrm{d}x = c_{n,m} \delta_n^m$

We can then expand sufficiently well-behaved functions

$$f(x) = \sum_{n=0}^{\infty} P_n(x) f_n = \mathbf{P}(x)^{\mathsf{T}} \mathbf{f}$$

A primer on sparse spectral methods

A set of polynomials P_n i(x) thogonal w.r.t. a weight if w(x) $\int_\Omega w(x) P_n(x) P_m(x) \mathrm{d}x = c_{n,m} \delta_n^m$

We can then expand sufficiently well-behaved functions

$$f(x) = \sum_{n=0}^{\infty} P_n(x) f_n = \mathbf{P}(x)^{\mathsf{T}} \mathbf{f}_{\mathbf{P}(x) := \begin{pmatrix} P_0(x) \\ P_1(x) \\ \vdots \end{pmatrix}, \quad \mathbf{f} := \begin{pmatrix} f_0 \\ f_1 \\ \vdots \end{pmatrix}}$$

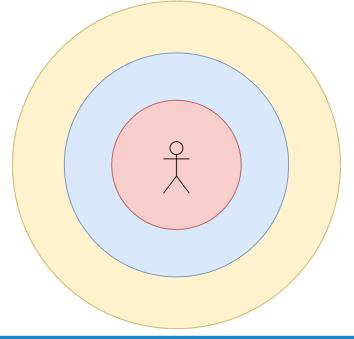
Banded sparse operators via orthogonal polynomials

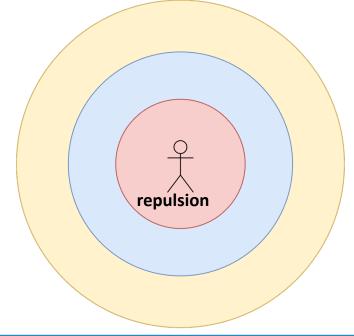
Multiplication operators can be defined using **recurrence relations** of the orthogonal polynomial basis of choice:

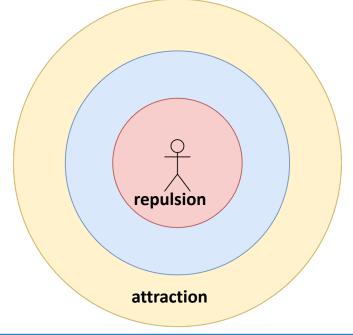
$$P_{n+1}(x) = (A_n x + B_n)P_n(x) - C_n P_{n-1}(x)$$
$$\mathbf{P}(x)^{\mathsf{T}} \mathbf{X} \mathbf{f} = x f(x)$$

And similarly for integration, differentiation and other operators.

Olver, S., Slevinsky, R.M., & Townsend, A. (2020). Fast algorithms using orthogonal polynomials. Acta Numerica.







Motivating power law equilibrium measures (I) repulsion alignment attraction

Discrete A particle dynamics described by Newtonian dynamics:

$$\frac{\mathrm{d}^2 x_i}{\mathrm{d}t^2} = f\left(\left|\frac{\mathrm{d}x_i}{\mathrm{d}t}\right|\right) \frac{\mathrm{d}x_i}{\mathrm{d}t} - \frac{1}{N} \sum_{j \neq i} \nabla K(|x_i - x_j|)$$

Discrete A particle dynamics described by Newtonian dynamics:

$$\frac{\mathrm{d}^2 x_i}{\mathrm{d}t^2} = f\left(\left|\frac{\mathrm{d}x_i}{\mathrm{d}t}\right|\right) \frac{\mathrm{d}x_i}{\mathrm{d}t} - \frac{1}{N} \sum_{j \neq i} \nabla K(|x_i - x_j|)$$
particle acceleration

Discrete A_{p} article dynamics described by Newtonian dynamics:

 $\frac{\mathrm{d}^2 x_i}{\mathrm{d}t^2} = f\left(\left|\frac{\mathrm{d}x_i}{\mathrm{d}t}\right|\right) \frac{\mathrm{d}x_i}{\mathrm{d}t} - \frac{1}{N}\sum_{j\neq i}\nabla K(|x_i - x_j|)$ particle acceleration

Discrete A particle dynamics described by Newtonian dynamics:

 $\frac{\mathrm{d}^2 x_i}{\mathrm{d}t^2} = f\left(\left|\frac{\mathrm{d}x_i}{\mathrm{d}t}\right|\right) \frac{\mathrm{d}x_i}{\mathrm{d}t} - \frac{1}{N} \sum_{j \neq i} \nabla K(|x_i - x_j|)$ particle acceleration

The equilibrium states of the continuous problem minimize

$$\iint K(x-y)\mathrm{d}\rho(x)\mathrm{d}\rho(y) + \int V(y)\mathrm{d}\rho(y).$$

The equilibrium states of the continuous problem minimize

$$\iint K(x-y)\mathrm{d}\rho(x)\mathrm{d}\rho(y) + \int V(y)\mathrm{d}\rho(y).$$

We consider attractive-repulsive power law kernels of the form

$$K(x,y) = \frac{1}{\alpha}|x-y|^{\alpha} - \frac{1}{\beta}|x-y|^{\beta}$$

The equilibrium states of the continuous problem minimize

$$\iint K(x-y)\mathrm{d}\rho(x)\mathrm{d}\rho(y) + \int V(y)\mathrm{d}\rho(y).$$

We consider attractive-repulsive power law kernels of the form

$$K(x,y) = \frac{1}{\alpha}|x-y|^{\alpha} - \frac{1}{\beta}|x-y|^{\beta}$$

An Euler-Lagrange approach shows we can instead find minimizers of

$$E + V(x) = \frac{1}{\alpha} \int_{\operatorname{supp}(\rho)} |x - y|^{\alpha} \rho(y) dy - \frac{1}{\beta} \int_{\operatorname{supp}(\rho)} |x - y|^{\beta} \rho(y) dy.$$

Connection to fractional calculus

DEFINITION 1.2 (Fractional Laplace operator). We define the negative fractional Laplace operator $(-\Delta)^{\frac{\gamma}{2}}$ for $\gamma \in (0,2)$ via the following singular integral

$$(-\Delta)^{\frac{\gamma}{2}}f(x) = \frac{2^{\gamma}|\Gamma(\frac{d+\gamma}{2})|}{\pi^{\frac{d}{2}}\Gamma(-\frac{\gamma}{2})} \lim_{\epsilon \to 0^+} \int_{\mathbb{R}^d \setminus B_{\epsilon}} \frac{f(x) - f(y)}{|x - y|^{d+\gamma}} \, dy,$$

where $B_{\epsilon} = B(0, \epsilon)$ denotes a ball of radius ϵ around the origin. Equivalently with range of validity $\gamma \in (0, d)$ we can write the fractional Laplacian as the inverse of the Riesz potential, thus denoted $(-\Delta)^{-\frac{\gamma}{2}}$:

$$(-\Delta)^{-\frac{\gamma}{2}}f(x) = \frac{\Gamma(\frac{d-\gamma}{2})}{\pi^{\frac{d}{2}}2^{\gamma}\Gamma(\frac{\gamma}{2})} \int_{\mathbb{R}^d} \frac{f(x-y)}{|y|^{d-\gamma}} \mathrm{d}y = \frac{\Gamma(\frac{d-\gamma}{2})}{\pi^{\frac{d}{2}}2^{\gamma}\Gamma(\frac{\gamma}{2})} \int_{\mathbb{R}^d} \frac{f(y)}{|x-y|^{d-\gamma}} \mathrm{d}y.$$

Motivating the use of spectral methods

If
$$f(x) := V(x)G_{pq}^{mn}\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} |x|^2$$
, then
 $(-\Delta)^{\frac{\gamma}{2}}f(x) = 2^{\gamma}V(x)G_{p+2,q+2}^{m+1,n+1}\begin{pmatrix} 1 - \frac{d+2l+\gamma}{2}, & \mathbf{a} - \frac{\gamma}{2}, & -\frac{\gamma}{2}\\ 0, & \mathbf{b} - \frac{\gamma}{2}, & 1 - \frac{d+2l}{2} \end{pmatrix} |x|^2$,

Dyda, B., Kuznetsov, A. & Kwaśnicki, M. Fractional Laplace Operator and Meijer G-function. Constr. Approx. 45, 427–448 (2017).

Motivating the use of spectral methods

If
$$f(x) := V(x)G_{pq}^{mn} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} |x|^2$$
, then
 $(-\Delta)^{\frac{\gamma}{2}}f(x) = 2^{\gamma}V(x)G_{p+2,q+2}^{m+1,n+1} \begin{pmatrix} 1 - \frac{d+2l+\gamma}{2}, & \mathbf{a} - \frac{\gamma}{2}, & -\frac{\gamma}{2} \\ 0, & \mathbf{b} - \frac{\gamma}{2}, & 1 - \frac{d+2l}{2} \end{pmatrix} |x|^2$,
If $f(x) = (1 - |x|^2)^{\frac{\gamma}{2}}V(x)P_n^{(\frac{\gamma}{2},\frac{d}{2}+l-1)}(2|x|^2 - 1)$, then
 $\gamma = 2^{\gamma}\Gamma(1 + \frac{\gamma}{2} + n)\Gamma(\frac{d+2l+\gamma}{2} + n) = (\gamma + l + 1) = -2$

$$(-\Delta)^{\frac{\gamma}{2}}f(x) = \frac{2^{\gamma}\Gamma(1+\frac{1}{2}+n)\Gamma(\frac{1}{2}+n)}{n!\Gamma(\frac{d+2l}{2}+n)}V(x)P_n^{(\frac{\gamma}{2},\frac{d}{2}+l-1)}(2|x|^2-1),$$

Dyda, B., Kuznetsov, A. & Kwaśnicki, M. Fractional Laplace Operator and Meijer G-function. Constr. Approx. 45, 427–448 (2017).

Riesz potentials and Jacobi polynomials (I)

THEOREM 2.16. On the d-dimensional unit ball B_1 the power law potential, with power $\alpha \in (-d, 2 + 2m - d)$, $m \in \mathbb{N}_0$ and $\beta > -d$, of the n-th weighted radial Jacobi polynomial

$$(1-|y|^2)^{m-\frac{\alpha+d}{2}}P_n^{(m-\frac{\alpha+d}{2},\frac{d-2}{2})}(2|y|^2-1)$$

reduces to a Gaussian hypergeometric function as follows:

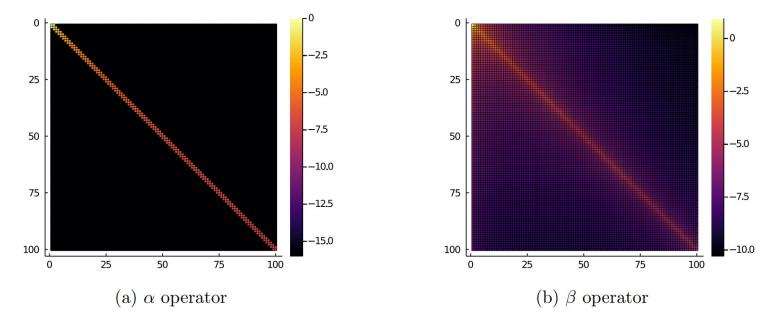
$$\begin{split} \int_{B_1} |x-y|^{\beta} (1-|y|^2)^{m-\frac{\alpha+d}{2}} P_n^{(m-\frac{\alpha+d}{2},\frac{d-2}{2})} (2|y|^2-1) \mathrm{d}y \\ &= \frac{\pi^{d/2} \Gamma(1+\frac{\beta}{2}) \Gamma(\frac{\beta+d}{2}) \Gamma(m+n-\frac{\alpha+d}{2}+1)}{\Gamma(\frac{d}{2}) \Gamma(n+1) \Gamma(\frac{\beta}{2}-n+1) \Gamma(\frac{\beta-\alpha}{2}+m+n+1)} {}_2F_1\left(n-\frac{\beta}{2},-m-n+\frac{\alpha-\beta}{2},\frac{d}{2},|x|^2\right). \end{split}$$

Riesz potentials and Jacobi polynomials (II)

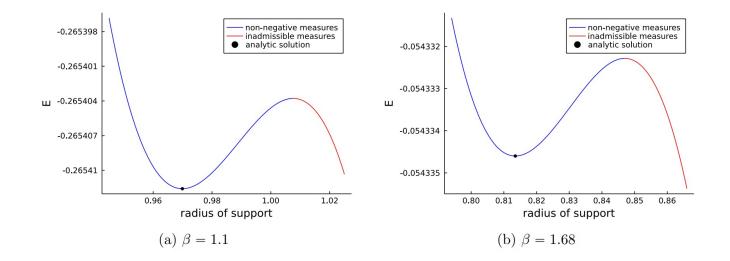
COROLLARY 2.19. On the unit ball B_1 , the power law integral of the Jacobi polynomials $P_n^{\left(m-\frac{\alpha+d}{2},\frac{d-2}{2}\right)}(2|y|^2-1)$ with weight $(1-|y|^2)^{m-\frac{\alpha+d}{2}}$, $\alpha \in (-d, 2+2m-d)$ and $\beta > -d$ satisfies the following three term recurrence relationship:

$$\begin{split} \int_{B_1} |x-y|^{\beta} (1-|y|^2)^{m-\frac{\alpha+d}{2}} P_{n+1}^{(m-\frac{\alpha+d}{2},\frac{d-2}{2})} (2|y|^2-1) \mathrm{d}y \\ &= (\mathfrak{c}_a |x|^2 + \mathfrak{c}_b) \int_{B_1} |x-y|^{\beta} (1-|y|^2)^{m-\frac{\alpha+d}{2}} P_n^{(m-\frac{\alpha+d}{2},\frac{d-2}{2})} (2|y|^2-1) \mathrm{d}y \\ &+ \mathfrak{c}_c \int_{B_1} |x-y|^{\beta} (1-|y|^2)^{m-\frac{\alpha+d}{2}} P_{n-1}^{(m-\frac{\alpha+d}{2},\frac{d-2}{2})} (2|y|^2-1) \mathrm{d}y, \end{split}$$

Banded and approximately banded Riesz potentials

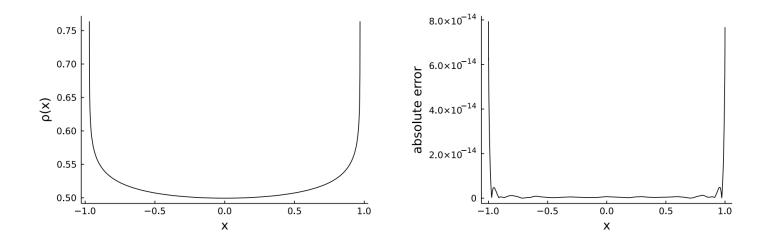


Numerical experiments (I): Verification



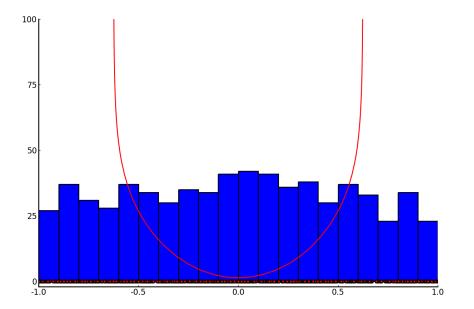
3. Numerical Experiments

Numerical experiments (I): Verification

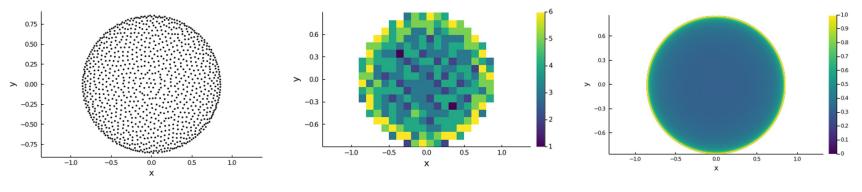


3. Numerical Experiments

Numerical experiments (I): Verification



Numerical experiments (I): Verification

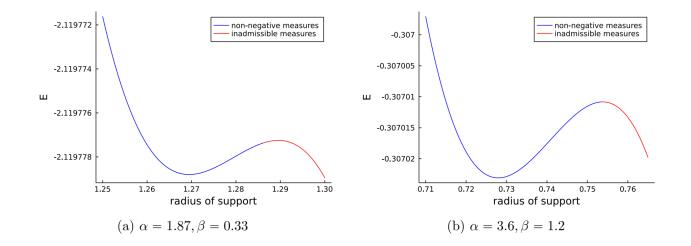


(a) $(\alpha, \beta, d) = (1.3, 1.1, 2)$

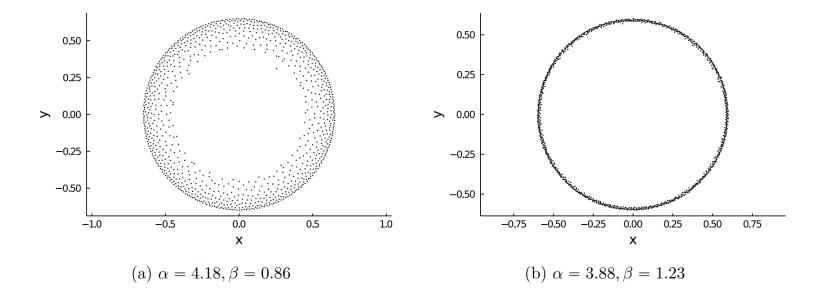
(b) 2D histogram based on (a)

(c) computed measure

Numerical experiments (II): Uniqueness



Numerical experiments (III): Gap formation boundary



3. Numerical Experiments

Numerical experiments (III): Gap formation boundary

