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PDEs, ODEs, integral equations, etc.approximate

• Monomials 𝑥!, 𝑥", 𝑥#, …
• Fourier series {𝑒$#%&'/)}
• Orthogonal Polynomials
in 1D: e.g. Jacobi, Hermite, Laguerre
in 2D: e.g. Proriol (◣), Zernike (●)
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Banded sparse operators via orthogonal polynomials
Multiplication operators can be defined using recurrence relations
of the orthogonal polynomial basis of choice:

1. Banded spectral methods

And similarly for integration, differentiation and other operators.

Olver, S., Slevinsky, R.M., & Townsend, A. (2020). Fast algorithms using orthogonal polynomials. Acta Numerica.
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Chapter 3 – Computing power law equilibrium measures

repulsion

attraction

alignment
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2. Computing power law equilibrium measures

Discrete     -particle dynamics described by Newtonian dynamics:

particle acceleration

self-propulsion and friction forces

pair-wise interaction potential
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The equilibrium states of the continuous problem minimize

We consider attractive-repulsive power law kernels of the form

An Euler-Lagrange approach shows we can instead find minimizers of



Connection to fractional calculus
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Dyda, B., Kuznetsov, A. & Kwaśnicki, M. Fractional Laplace Operator and Meijer G-function. Constr. Approx. 45, 427–448 (2017).
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Banded and approximately banded Riesz potentials
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Numerical experiments (II): Uniqueness
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