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1.1 Introduction: Equations

For dimensions n = 2, 3, heat-conducting compressible flow is governed by the
following system of partial differential equations:

Orp + div(p[j) =0,
8 (pU) + div(pU @ U) + VP = divS, (CNS)
0 (pE) + div((pE + P)U) = div(S - U) + div(koVH),

where p > 0 is mass density,

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



1.1 Introduction: Equations

For dimensions n = 2, 3, heat-conducting compressible flow is governed by the
following system of partial differential equations:

Orp + div(p[j) =0,
8 (pU) + div(pU @ U) + VP = divS, (CNS)
0 (pE) + div((pE + P)U) = div(S - U) + div(koVH),

where p > 0 is mass density, U = (U*,...,U™) € R™ is velocity,

)

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



1.1 Introduction: Equations

For dimensions n = 2, 3, heat-conducting compressible flow is governed by the
following system of partial differential equations:

Owp + div(p[j) =0,
8 (pU) + div(pU @ U) + VP = divS, (CNS)
0 (pE) + div((pE + P)U) = div(S - U) + div(koVH),

where p > 0 is mass density, U = (U,...,U™) € R™ is velocity, P > 0 is

pressure,

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



1.1 Introduction: Equations

For dimensions n = 2, 3, heat-conducting compressible flow is governed by the
following system of partial differential equations:

Owp + div(p[j) =0,
8 (pU) + div(pU @ U) + VP = divS, (CNS)
0 (pE) + div((pE + P)U) = div(S - U) + div(koVH),
where p > 0 is mass density, U = (U,...,U™) € R™ is velocity, P > 0 is
pressure, F :=e + W%Z is total energy per unit mass,

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



1.1 Introduction: Equations

For dimensions n = 2, 3, heat-conducting compressible flow is governed by the
following system of partial differential equations:

Owp + div(p[j) =0,
8 (pU) + div(pU @ U) + VP = divS, (CNS)
0 (pE) + div((pE + P)U) = div(S - U) + div(koVH),

where p > 0 is mass density, U = (U,...,U™) € R™ is velocity, P > 0 is

712
ressure, B := e + 1L is total ener er unit mass, e is internal ener, er unit
2 \
mass,

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



1.1 Introduction: Equations

For dimensions n = 2, 3, heat-conducting compressible flow is governed by the
following system of partial differential equations:

Owp + div(p[j) =0,
8 (pU) + div(pU @ U) + VP = divS, (CNS)
0 (pE) + div((pE + P)U) = div(S - U) + div(koVH),

where p > 0 is mass density, U = (U,...,U™) € R™ is velocity, P > 0 is

712
pressure, F :=e + % is total energy per unit mass, e is internal energy per unit
mass, 0 is temperature, kg > 0 is heat conduction coefficient,

Huang, Yucong (Oxford/Edinburgh Compressible Navier-Stokes Equations August 2022
2. g



1.1 Introduction: Equations

For dimensions n = 2, 3, heat-conducting compressible flow is governed by the
following system of partial differential equations:
Owp + div(p[j) =0,
8 (pU) + div(pU @ U) + VP = divS, (CNS)
0 (pE) + div((pE + P)U) = div(S - U) + div(koVH),
where p > 0 is mass density, U = (U,...,U™) € R™ is velocity, P > 0 is

712
pressure, F :=e + % is total energy per unit mass, e is internal energy per unit
mass, 0 is temperature, kg > 0 is heat conduction coefficient, and S is viscous
stress tensor.

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



1.1 Introduction: Equations

For dimensions n = 2, 3, heat-conducting compressible flow is governed by the
following system of partial differential equations:
Owp + div(p[j) =0,
8 (pU) + div(pU @ U) + VP = divS, (CNS)
0 (pE) + div((pE + P)U) = div(S - U) + div(koVH),
where p > 0 is mass density, U = (U,...,U™) € R™ is velocity, P > 0 is

712
pressure, F :=e + % is total energy per unit mass, e is internal energy per unit
mass, 0 is temperature, kg > 0 is heat conduction coefficient, and S is viscous
stress tensor.

Two assumptions: (1) Ideal gas; (2) Polytropic, i.e. € = ¢/ 6.

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



1.1 Introduction: Equations

For dimensions n = 2, 3, heat-conducting compressible flow is governed by the
following system of partial differential equations:
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8 (pU) + div(pU @ U) + VP = divS, (CNS)
0 (pE) + div((pE + P)U) = div(S - U) + div(koVH),
where p > 0 is mass density, U = (U,...,U™) € R™ is velocity, P > 0 is

712
pressure, F :=e + % is total energy per unit mass, e is internal energy per unit
mass, 0 is temperature, kg > 0 is heat conduction coefficient, and S is viscous
stress tensor.

Two assumptions: (1) Ideal gas; (2) Polytropic, i.e. e = ¢y6. Hence,

1. P=P(p,e) = (y— 1)pe, where v > 1.
2. div(kgV#0) = kAe where k = kg /cy > 0.
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uction: Viscous Stress Tensor

The viscous stress tensor, S is given as follows:
S(VU) := (VU + VU ) 4 AL, divU,

where I, is n X n identity matrix, u is the shear viscosity coefficient and quantity
%u -+ A is the bulk viscosity coefficient.
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uction: Viscous Stress Tensor

The viscous stress tensor, S is given as follows:
S(VU) := (VU + VU ) 4 AL, divU,

where I, is n X n identity matrix, u is the shear viscosity coefficient and quantity
%u -+ A is the bulk viscosity coefficient.

We assume p, A to be given constants. Then the term divS can be written as the
following second order linear differential operator:

divS(VU) = LU := p AU + (u + ) VdivU.
Moreover, we also impose the following physical condition:
2
w>0 and ﬁ“+)\20'

The sufficient condition for L to be an elliptic operator is ¢ > 0 and pu+ A > 0.
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1.1 Introduction: Equations in Spherical Symmetry

For spherically symmetric solution, it takes the form:

- z

(0, U, e)(Z,1) = (p(|Z],1), u(|], 1) 7 ce(7),1)), (1) € R" x [0,00).
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|z’
Denote r = |Z| and m = n — 1. Then (p,u, e)(r,t) satisfies the equations:

Owp + ulrp + p(@ru + m%) =0,

PO+ pudru + 8, P = 30, (W} (SNS)
pose + pudre + Pw =D+ KW,

where D —2,u(|6u| +m— )—l—)\(au—i—m )2, B=2u+A>0.

We call it the (Spherically Symmetrlc) Cauchy Problem if the domain is set in
(r,t) € [0,00) x [0,00), with the initial condition:

(p,u,e)(r,0) = (po, uo, eo)(r) for r € 0,00). (ID)
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1.2 Previous Results: 1D/MD Spherically Symmetric Case

@ Kazhikhov and Shelukhin 1977 considered one-dimensional(1D) bounded
spatial domain © = [a, b], with large smooth initial data such that
0 < infzeq po(x) < sup,ecq po < 0.
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Jim [[(p,w,€)( 1) = (2,0,0) |2

@ Jiang 1996 considered large, smooth, multi-dimensional(MD) spherically
symmetric initial data in the exterior domain Q = {Z € R" : a < |Z| < oo}
for a fixed a > 0. He obtained the global-in-time existence and
uniqueness of a spherically symmetric classical solution.

@ Hoff and Jenssen 2004 considered large, discontinuous, MD spherically
symmetric initial data in a bounded ball: @ = B(0; R), R > 0. They
obtained a global-in-time spherically symmetric weak solution. The
significance of this result is that the region includes the origin |Z] = 0.
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1.2 Previous Results: General MD Without Symmetry

@ Nash 1962 considered the Cauchy Problem in Q = R"™, with large
smooth initial data such that Co_l < po < Cy for some Cy > 0.
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1.2 Previous Results: General MD Without Symmetry

@ Nash 1962 considered the Cauchy Problem in Q = R"™, with large
smooth initial data such that Co_l < po < Cy for some Cy > 0. He
obtained the local-in-time existence and uniqueness of a classical
solution.

o Lions 1993 considered the equations for isentropic flow, P(p) = Ap?,
with large, possibly discontinuous initial data. Under the assumption
that v > 3/2if n =2 and v > 9/5 if n = 3, he obtained a
global-in-time finite energy weak solution in a bounded or
periodic domain 2 C R™:

po € LYNLYQ) and /poug € L*(Q)
p € L0, T; L' N LYN))NC([0,00); LYU(Q)), 1<qg<r
Vu e L*(0,T; L*(Q)), plul> € L>(0,T; L'(9)).
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2. Main Theorem
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2.1 Definition of Weak Solution I

Definition 1.1 (Weak Solution)

Given T > 0 and initial data (po, Uy, e0)(Z) in & € R", we say (p,U,e)(Z,t) is a
weak solution to the Cauchy Problem (CNS) and (ID) in (Z,t) € R™ x [0,T] if
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Using r(t), we define the fluid region F, and the vacuum region V as:

Fi={(#t) e R* x [0,T] : r(t) < || < 00}, V:= R™\F.
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Given T > 0 and initial data (po, Uy, e0)(Z) in & € R, we say (p,U,e)(Z,t) is a
weak solution to the Cauchy Problem (CNS) and (ID) in (Z,t) € R™ x [0,T] if

1. there exists an upper semi-continuous map r(t) : [0,T] — [0,00) and a
constant Cy = Co(po,uo, o) > 0, such that

sup r(t) < Cp and lim r(t) =0. r(t) is called "vacuum radius”.
te[0,T] t—0+

Using r(t), we define the fluid region F, and the vacuum region V as:
F ={(Z,t) e R" x [0,T] : r(t) < |&| < o0}, V:=R"\F.
2. pe L2 (F) and (U,e) € HL (F). p(Z,t) =0 for a.e. (Z,t) € V.

3. the weak form of continuity equation holds for any ® € C! ([0, T);Cl (]R"))

4. the weak form of momentum and energy equations holds for test functions
¥ € C2([0,T);C2(R™)) satisfying supp(¥) CC F.
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2.2 Global Existence of Weak Solution |

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)
Denote r = |Z|. Let (po, Up, €0)(Z) = (pg(’)”),’lto(’)”)a;, eo(r)) be a spherically

symmetric initial data in £ € R™ such that, there exists Cy > 0 for which it
satisfies the following conditions:

C’O_1 < eo(r), C’O_1 < po(r) < Cp for r € [0, 00),
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2.2 Global Existence of Weak Solution |

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)

Denote r = |Z|. Let (po, Up, €0)(Z) = (pg(’)”),’lto(’)”)a;, eo(r)) be a spherically
symmetric initial data in £ € R™ such that, there exists Cy > 0 for which it
satisfies the following conditions:

Co' <eo(r), Co' <po(r)<Coy  forre0,00),
/ (oo = 112 + [uo]* + leo — 12} (r)r™dr < Co,
/ { Po|uo|2 — 1)G(po) + pot(eo) } (r)r™dr < Cy,

where G({) :=1—(+ (log¢ and ¥(¢) :== ¢ — 1 —log(.
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2.2 Global Existence of Weak Solution |

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)
Denote r = |Z|. Let (po, Up, €0)(Z) = (pg(’)”),’lto(’)”)a;, eo(r)) be a spherically
symmetric initial data in £ € R™ such that, there exists Cy > 0 for which it
satisfies the following conditions:

C’O_1 < eo(r), C’O_1 < po(r) < Cp for r € [0, 00),

/m{lpo — 11 + Juo|* + |eo — 1[*}(r)r™dr < Co,
/ { Po|uo|2 — 1)G(po) + potp(eo) } (r)r™dr < Co,
where G(¢) :=1— ¢+ (log¢ and ¥(¢) := ¢ — 1 —log (.

Theg for any T' > 0, there exists a spherically symmetric weak solution
(p,U,e)(Z,t) to the problem (CNS) and (ID) in the domain (Z,t) € R™ x [0, T.

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



2.2 Global Existence of Weak Solution 11

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)
1. ForT > 0, there exists C(T) = C(Cy,T) > 0 such that

PlUP s
esssup [ {G(p) + = }(@,t)dZ < C(T).
teo,7] JRrn 2
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2.2 Global Existence of Weak Solution 11

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)
1. ForT > 0, there exists C(T) = C(Cy,T) > 0 such that

712
ess sup {G(p) + M}(913’, t)dZ < C(T).
teo,7] JRrn 2
Moreover, there exists a positive, continuous, strictly increasing

function g : [0,00) — [0, 00) with lim,_,o+ g(y) = 0 such that,

esssup/ pe(Z,t)dz < C(T)+g(/ dz),
tel0,T] JE E

for all bounded measurable set E C R™.
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2.2 Global Existence of Weak Solution 11

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)

2. There exists a continuous map 7(y,t) : (0,00) x [0,7] — [0,00) s.t.
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2.2 Global Existence of Weak Solution 11

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)

2. There exists a continuous map 7(y,t) : (0,00) x [0,7] — [0,00) s.t.
2a. y — 7(y,t) is strictly monotone increasing for all t € [0,T],
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2.2 Global Existence of Weak Solution 11

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)

2. There exists a continuous map 7(y,t) : (0,00) x [0,7] — [0,00) s.t.
2a. y — 7(y,t) is strictly monotone increasing for all t € [0,T],
2b. r(t) = lim,_,o+ 7(y,t) for a.e. t € [0,T],
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2.2 Global Existence of Weak Solution 11

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)

2. There exists a continuous map 7(y,t) : (0,00) x [0,7] — [0,00) s.t.
2a. y — 7(y,t) is strictly monotone increasing for all t € [0,T],
2b. r(t) = lim,_,o+ 7#(y,t) for a.e. t € [0,T],
2c. fora.e. y>0andte0,7T],

/ p(Z,t)dz = y.
(1) <|7|<F(y.t)
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2.2 Global Existence of Weak Solution 11

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)

2. There exists a continuous map 7(y,t) : (0,00) x [0,7] — [0,00) s.t.
2a. y — 7(y,t) is strictly monotone increasing for all t € [0,T],
2b. r(t) = lim,_,o+ 7#(y,t) for a.e. t € [0,T],
2c. fora.e. y>0andte0,7T],

/ p(Z,t)dz = y.
(1) <|7|<F(y.t)

Using this, one defines F. := {(&,t) € R" x [0,T] : |Z| > 7(e, t)}.
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2.2 Global Existence of Weak Solution 11

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)

2. There exists a continuous map 7(y,t) : (0,00) x [0,7] — [0,00) s.t.
2a. y +— 7(y,t) is strictly monotone increasing for all t € [0,T],
2b. r(t) = lim,_,o+ 7#(y,t) for a.e. t € [0,T],
2c. fora.e. y>0andte0,T],

/ p(Z,t)dz = y.
(1) <|7|<F(y.t)

Using this, one defines F. := {(Z,t) € R™ x [0,T] : |Z| > 7(e,t)}.
3. For any e > 0, there exists C(e) = C(e, T, Cy) > 0 such that for all
(Z,t), (g,1), (Z,s), (Z,t) € Fe with0 < s <t,

=2 s L
tle(Z,t) — e(7, 1) + t2|0(Z,1) — U(7,1)| < C(e)|Z — 712,
sle(@,t) — e(&,5)| + s2|0(&,t) — U(, 9)| < C(e)It — 87,
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2.2 Global Existence of Weak Solution 11

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)

2. There exists a continuous map 7(y,t) : (0,00) x [0,7] — [0,00) s.t.
2a. y +— 7(y,t) is strictly monotone increasing for all t € [0,T],
2b. r(t) = lim,_,o+ 7#(y,t) for a.e. t € [0,T],
2c. fora.e. y>0andte0,T],

/ p(Z,t)dz = y.
(1) <|7|<F(y.t)

Using this, one defines F. := {(Z,t) € R™ x [0,T] : |Z| > 7(e,t)}.
3. For any e > 0, there exists C(e) = C(e, T, Cy) > 0 such that for all
(@, 1), (4,t), (£,s), (Z,t) € Fe with0 < s <,

tle(@,t) — e(F, 0)| + 3|0 (Z,t) — U(g,1)| < C(e)|Z — 72,
sle(Z,t) — (f,s)|+5%|U(f,t)—U($,s)| SC(a)\t—sﬁ,
( (Z,1)| + t2e(Z, 1) < C(e).
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2.2 Vacuum Radius and y-Mass Radius

t
A
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3. Main Strategy
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3.1 Spherically Symmetric Exterior Problem I

If one supposes that the map 7 — (ﬁ, Ve)(Z,t) is continuous at the origin
Z = 0. Then the spherically symmetric condition implies that

u(0,t) = 0re(0,t) =0 for all t € [0,00). (0)
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3.1 Spherically Symmetric Exterior Problem I

If one supposes that the map 7 — (ﬁ, Ve)(Z,t) is continuous at the origin
Z = 0. Then the spherically symmetric condition implies that

u(0,t) = 0re(0,t) =0 for all t € [0,00). (0)

The main difficulty is the singular terms such as mg39, (r‘lu) and
kr~10,e in the equations.
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3.1 Spherically Symmetric Exterior Problem I

If one supposes that the map Z — (U, Ve)(&,t) is continuous at the origin
Z = 0. Then the spherically symmetric condition implies that

u(0,t) = 0re(0,t) =0 for all t € [0,00). (0)

The main difficulty is the singular terms such as mg39, (r‘lu) and
kr~10,e in the equations.

Motivated by (O), one introduces the Exterior Problem with parameter
a € (0,1), by imposing the boundary condition:

u(a,t) = dre(a,t) =0 fort € [0,00) at r = a.
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3.1 Spherically Symmetric Exterior Problem I

If one supposes that the map Z — (U, Ve)(&,t) is continuous at the origin
Z = 0. Then the spherically symmetric condition implies that

u(0,t) = 0re(0,t) =0 for all t € [0,00). (0)

The main difficulty is the singular terms such as mg39, (r‘lu) and
kr~10,e in the equations.

Motivated by (O), one introduces the Exterior Problem with parameter
a € (0,1), by imposing the boundary condition:

u(a,t) = dre(a,t) =0 fort € [0,00) at r = a.

Note that the above condition corresponds to a physical model where
there is an insulating solid ball of radius a € (0,1) centred at the origin,
and we call it the Exterior Boundary Condition.
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3.1 Spherically Symmetric Exterior Problem IT

Furthermore, we impose the condition near far-field region |Z| — oo:

lim (p,u,e,dre)(r,t) =(1,0,1,0) forall t € [0,00).

r—00
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3.1 Spherically Symmetric Exterior Problem IT

Furthermore, we impose the condition near far-field region |Z| — oo:

lim (p,u,e,dre)(r,t) =(1,0,1,0) forall t € [0,00).

r—00
Combining with the previously mentioned exterior boundary condition, we
define the Eulerian (Spherically Symmetric) Exterior Problem with
radius a € (0,1) as

(SNS) in [a,00) X [0, 00),

u(a,t) = Ore(a,t) =0

rlggo(pv w6, 0,¢)(r, 1) = (1,0,1,0) for all ¢t € [0, 00), (EE),
(pyu,e)(r,0) = (p2,ul, e2)(r) for all r € [a, 00).

where (p2,u2,e)(r) is the modified initial data from (pg, uo, eo)(r).

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



3.2 Lagrangian Coordinate: General MD Case

Let (p, U, e)(7,t) in (,t) € R" x [0,00) be a solution to (CNS) such that
C‘lgpSC’forsomeC>0.
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3.2 Lagrangian Coordinate: General MD Case

Let (p, U, e)(7,t) in (,t) € R" x [0,00) be a solution to (CNS) such that
C‘lgpSC’forsomeC>0.

For general multi-dimensional flow, Let X : R” x [0, 00) — R™ be the
characteristic curve satisfying:

ax S
ﬁ(z, t) = U(X(th)at) for ¢ € [0’ OO), (Char)

X(2,0) = ¢o(2) for 7 € R™,

where ¢ : R®" — R" is a given diffeomorphism.
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3.2 Lagrangian Coordinate: General MD Case

Let (p, U, e)(7,t) in (,t) € R" x [0,00) be a solution to (CNS) such that
C‘lgngforsomeC>0.

For general multi-dimensional flow, Let X : R” x [0, 00) — R™ be the
characteristic curve satisfying:

%(z, t)=U(X(Z,t),t) forte0,00),

X(2,0) = ¢o(2) for 7 € R™,

(Char)

where ¢ : R®" — R" is a given diffeomorphism.

Then the Eulerian coordinate variables (7/,t) € R™ x [0, 00) and
Lagrangian coordinate variables (2,t) € R™ x [0, c0) satisfy:

(7:t) = (X(2,1),1)

Huang, Yucong (Oxford/Edinburgh Compressible Navier-Stokes Equations August 2022
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3.2 Lagrangian Coordinate: Spherical Exterior Problem

Let (pa; Uas €a) (1) = (pa(171, t), wa (|31, )5, e(|37],1)) be a symmetric solution
to the Exterior Problem in {|%] > a}. We denote r = |§] and = = |Z].
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3.2 Lagrangian Coordinate: Spherical Exterior Problem

Let (pa; Uas €a) (1) = (pa(171, t), wa (|31, )5, e(|37],1)) be a symmetric solution
to the Exterior Problem in {|%] > a}. We denote r = |§] and = = |Z].

Set po(Z) as the spherically symmetric map:

|2

o (x)
wo(2) =72(]2]) where x = / p2(r)r™dr for all z > 0.

The choice of g physically means that > 0 amount of initial mass is contained
in the annular domain between r = @ and r = 79 (x).

Xy
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3.2 Lagrangian Coordinate: Spherical Exterior Problem

Let (pa; Uas €a) (1) = (pa(171, t), wa (|31, )5, e(|37],1)) be a symmetric solution
to the Exterior Problem in {|%] > a}. We denote r = |§] and = = |Z].

Set po(Z) as the spherically symmetric map:

|2

o (x)
wo(2) =72(]2]) where x = / p2(r)r™dr for all z > 0.

The choice of g physically means that > 0 amount of initial mass is contained
in the annular domain between r = @ and r = 79 (x).

Xy

By uniqueness of the solution to (Char), Z — X (Z,t) is spherically symmetric,

thus we can define 7o (|2],) := \/| X (Z,1)]2.
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3.2 Lagrangian Coordinate: Spherical Exterior Problem

Let (pa; Uas €a) (1) = (pa(171, t), wa (|31, )5, e(|37],1)) be a symmetric solution
to the Exterior Problem in {|%] > a}. We denote r = |§] and = = |Z].

—\

Set po(Z) as the spherically symmetric map:

|2

o (x)
wo(2) =72(]2]) where x = / p2(r)r™dr for all z > 0.

The choice of g physically means that > 0 amount of initial mass is contained
in the annular domain between r = @ and r = 79 (x).

Xy

By uniqueness of the solution to (Char), Z — X (Z,t) is spherically symmetric,

thus we can define 7 (|Z], 1) := \/| X (Z, t)|2. Suppose 7, > a, then

OTa(x,t) = ua(Falx,t),t) fort e [0,T],
Fo(z,0) = 72(2) for z > 0.
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3.2 Lagrangian Reformulation

Under spherical symmetry, the Lagrangian variables (z,t) is related to the
Eulerian variables (r,t) via the relation: r = 7 (z,1).
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3.2 Lagrangian Reformulation

Under spherical symmetry, the Lagrangian variables (z,t) is related to the
Eulerian variables (r,t) via the relation: r = 7 (z,1).

Denote 9(z,t) := 1/pa(Ta(x,t),t), (4, €)(x,t) = (Uq,€q)(Ta(x,t),t), and
7(z,t) := 7oz, t).

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



3.2 Lagrangian Reformulation

Under spherical symmetry, the Lagrangian variables (z,t) is related to the
Eulerian variables (r,t) via the relation: r = 7 (z,1).

= 1/pa(Ta(,1),t), (4,€)(z,1) := (ua; €a)(Ta(2,1),t), and

Denote o(z,t) :=
7a(x,t). Then equations (SNS) can be reformulated as

F(z,t) =

th} = Dz(":ma)

Dyt + 7" Dapl®:8) = 5 De(Z257) i (w,0) € 0,00, (LNS)
~2m

Dy — ﬁDz<LDzé) = G(7, 7,1, &)
v

‘Dw(rm“)P m—1,2

where  G(r,v,u,e) =0 —p(v,e)Dy(r™u) — 2muDy (r™ ™ u”),

and p(v,e) == (y — 1)e/v.
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3.2 Lagrangian Reformulation

Under spherical symmetry, the Lagrangian variables (z,t) is related to the
Eulerian variables (r,t) via the relation: r = 7 (z,1).

= 1/pa(Ta(,1),t), (4,€)(z,1) := (ua; €a)(Ta(2,1),t), and

Denote o(z,t) :=
7a(x,t). Then equations (SNS) can be reformulated as

P(x,t) =
Do = D, (#™i)

~2m
- r - e~ o~
D.é — nDz<7Dze) =G(7,0,1,€)

where  G(r,v,u,e) = — p(v, &) Dy (r™u) — 2muDy (r™tu?),

and p(v,e) := (v — 1)e/v. Moreover (LNS) is supplemented with the non-linear
coefficient 7 = 7(z, t) defined by:

7(x,t) == (a" + n/om ﬁ(z,t)dz)% .
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3.2 Approximation problems in finite annuli

(1) Construct (vq,k,Ua ks €a,k) to the approximation Lagrangian problem:

(LNS)
Fah(@1) = (an +”/Oz va,k(y,t)dy)% n 10K} (0,00,

ua’k(o,t) = Dwea’k(o,t) =0
ua’k(k,t) = Dmea’k(ht) = 0

(Va, ks Ua, ks €a k)| t=0 = (vg,k,u27k,eg7k) for x € [0, k].

(LE)a,k
for t € [0, 00),

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



3.2 Approximation problems in finite annuli

(1) Construct (vq,k,Ua ks €a,k) to the approximation Lagrangian problem:

(LNS)
Fah(@1) = (“n +”/Oz va,k(y,t)dy)% n 10K} (0,00,

ua’k(07t) = Dwea’k(o,t) =0
ua’k(k,t) = Dmea’k(ht) = 0

(Va, ks Ua, ks €a k)| t=0 = (vg,k,u27k,eg7k) for x € [0, k].

(LE)a,k
for t € [0, 00),

(2) Convert the approximate solutions into Eulerian coordinate:
(ﬁa,ka Ug, ks éa,k)(r7 t) = (’U(;]l(ﬂ Ua,k, ea,k)(xa,k(ra t)’ t)
where 7 — x4 (7, 1) is the inverse of « +— 74 i (2, 1).

(3)
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3.2 Approximation problems in finite annuli

(1) Construct (vq,k,Ua ks €a,k) to the approximation Lagrangian problem:
(LNS)
. x L in [0,k] x [0, 00),
ra(e.t) = (a4 [ van(o )
0
ua’k(07t) = Dwea’k(o,t) =0
ua’k(k,t) = Dmea’k(ht) = 0

(Va, ks Ua, ks €a k)| t=0 = (vg,k,u27k,eg7k) for x € [0, k].

(LE)a,k
for t € [0, 00),

(2) Convert the approximate solutions into Eulerian coordinate:
(Paks ks €ak)(r ) = (Vg s Ua ks €a k) (Ta k(75 1), 1)
where 7 — x4 (7, 1) is the inverse of « +— 74 i (2, 1).
(3) Extend (pa.k, Ua ks €a,k)(rst) into 7 € [0, 00) by cut-off function ¢ x(r):

ﬁa,k = Pa,kPa,k T (1 _QOa,k)a éa,k = €q,kPa,k T+ (1 _@a,k)7 aa,k = Uq,kPa,k-

(4)

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



3.2 Approximation problems in finite annuli

(1) Construct (vq,k,Ua ks €a,k) to the approximation Lagrangian problem:
(LNS)
. x L in [0,k] x [0, 00),
ra(e.t) = (a4 [ van(o )
0
ua’k(07t) = Dwea’k(o,t) =0
ua’k(k,t) = Dmea’k(ht) = 0

(Va, ks Ua, ks €a k)| t=0 = (vg,k,u27k,eg7k) for x € [0, k].

(LE)a,k
for t € [0, 00),

(2) Convert the approximate solutions into Eulerian coordinate:
(Paks ks €ak)(r ) = (Vg s Ua ks €a k) (Ta k(75 1), 1)
where 7 — x4 (7, 1) is the inverse of « +— 74 i (2, 1).
(3) Extend (pa.k, Ua,ks €ak)(r,t) into r € [0,00) by cut-off function ¢q k(r):
Pak = PakPak+(1=Pak); €ak = CakPakt(1—Pakr) Uak = UakPak-

(4) Take limit k¥ — oo, then take limit a — 07 to get (p, u,e) as in Theorem 1.1.

Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



3.3 Uniform a-priori estimates: bounds on density I

To take limit K — oo and a — 01, some uniform estimates on (v, i, Ua k, €a,k)
are required. This is achieved by first obtaining the uniform point-wise upper

and lower bounds on density.

Lemma 2.1 (Entropy Estimate)

Set (¢) := ¢ —log¢ — 1, and define S := (v — 1) (v) + (e) + g to be the

entropy.
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3.3 Uniform a-priori estimates: bounds on density I

To take limit K — oo and a — 01, some uniform estimates on (v, i, Ua k, €a,k)
are required. This is achieved by first obtaining the uniform point-wise upper
and lower bounds on density.

Lemma 2.1 (Entropy Estimate)
Set (¢) := ¢ —log¢ — 1, and define S := (v — 1) (v) + (e) + g to be the

entropy. If (v, u,e) is a solution to the approximation Lagrangian Exterior
Problem (LE), , then

k t rk ) D m 2 2m| D el?
/ S(z,t)dzr + / / {(_M + ) | D (r™w) T | Doel }dmdt

ve?

_ /O * §(z.0)dz.
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3.3 Uniform a-priori estimates: bounds on density II

Substitute the continuity equation Dyv = D, (r™u) into the momentum equation:
D m
Dyu+r"D,p = BrmDI(M), where 8 =2u+ A > 0,
v

then multiply both sides by »~™, and since D;r(xz,t) = u(z,t), we have

u
rm

|ul?
)+m - + D,p=p8D;D,logwv.

r

Dy(
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3.3 Uniform a-priori estimates: bounds on density II

Substitute the continuity equation Dyv = D, (r™u) into the momentum equation:
D m
Dyu+r"D,p = BrmDI(M), where 8 =2u+ A > 0,
v

then multiply both sides by »~™, and since D;r(xz,t) = u(z,t), we have

Dy ( —l—m— + D,p=p8D;D,logwv.

)

Integrating the above equation in the region (y, s) € [x1,x2] X [0,¢] and then take
exponential on both sides, we get the representation formula for density

vo(x2)v(21,1)
vo(z1)v(x2,1)

= exp (/:2 ﬁrimdy

S:04— y-le, y 2 / /“ mIU|2d ds)z
s=t 0 ﬂ U y x2
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vo(x2)v(21,1)

vo(z1)v(xe,1)

s=0 -1 4 y 7 T2 m|u|2
+ s d ds) =7
Y s=t 0 ﬁ U ly=m2 / / Y

= exp ( &“Lmd
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3.3 Uniform a-priori estimates: bounds on density 111

2

= exp (
1

s=0 _ 1 y xT xr2 2
ﬁrimdy \ + T% s ' / / m|u| dyds) =7
§= 0 Y=x2

Z can be bounded by Gronwall’s inequality and the entropy estimate, Lemma 2.1.

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022



3.3 Uniform a-priori estimates: bounds on density 111

vo(x2)v(21,1)

vo(z1)v(xe,1)

s=0 _ 1 y xT xr2 2
ﬁrimdy \ + T% s ' / / m|u| dyds) =7
§= 0 Y=x2

Z can be bounded by Gronwall’s inequality and the entropy estimate, Lemma 2.1.

:exp<

From this formula for density, we can determine two explicit functions
v(x,t), v(x,t) : [0,k] x [0,00] = (0,00), which are independent of (a, k) so that

v(e,T) <w(z,t) <v(e,T) forall (x,t) € [e,k] x [0,T], for each € > 0.
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vo(x2)v(21,1)

vo(z1)v(xe,1)
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ﬁrimdy \ + T% s ' / / m|u| dyds) =7
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:exp<

From this formula for density, we can determine two explicit functions
v(x,t), v(x,t) : [0,k] x [0,00] = (0,00), which are independent of (a, k) so that

v(e,T) <w(z,t) <v(e,T) forall (x,t) € [e,k] x [0,T], for each € > 0.

The restriction = € [e, k] comes from the lower bound of r(z, ).
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3.3 Uniform a-priori estimates: bounds on density 111

vo(x2)v(21,1)

vo(z1)v(xe,1)

u 5=0 -1 €4 y T 2 m|u|2
=e —d — dd =7
Xp( ﬁrmys:t+0 3 vsym2 // ys

Z can be bounded by Gronwall’s inequality and the entropy estimate, Lemma 2.1.

From this formula for density, we can determine two explicit functions
v(x,t), v(x,t) : [0,k] x [0,00] = (0,00), which are independent of (a, k) so that

v(e,T) <w(z,t) <v(e,T) forall (x,t) € [e,k] x [0,T], for each € > 0.

The restriction x € [e, k] comes from the lower bound of r(x,t). By entropy
estimate fok Y(v)dax < Cp, and Jensen's inequality, one has for each € > 0,

(nsdz:l(%))% <r(z,t) in (z,t) € [e, k] x [0,00).
where 9 ~1(-) 1 [0,00) — (0,1] is the left branch inverse of ¢)(¢) = ¢ — 1 —log(.
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3.3 Uniform a-priori estimates for (u, e)

Once the point-wise upper and lower bounds of v(x,t) and r(x,t) are obtained,
one can utilise the parabolic structure:

2m

Dyu — mme(M) —{-}, Die— I{Dm(r

v

Dye) = {1},

to derive the uniform a-priori estimates on u(z,t) and e(x,t).
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3.3 Uniform a-priori estimates for (u, e)

Once the point-wise upper and lower bounds of v(x,t) and r(x,t) are obtained,
one can utilise the parabolic structure:

2m

Dyu — ﬂrme(M) —{-}, Die— HDI(TTDIe) Y

to derive the uniform a-priori estimates on u(z,t) and e(x,t).

Lemma 2.2

Assume (v, u,e)(x,t) solves (LE), ;.
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3.3 Uniform a-priori estimates for (u, e)

Once the point-wise upper and lower bounds of v(x,t) and r(x,t) are obtained,
one can utilise the parabolic structure:

2m

DtU*ﬂTmDI(M) ={-} DtefﬁDm(TT

Dre) = { .. }7
to derive the uniform a-priori estimates on u(z,t) and e(x,t).

Lemma 2.2

Assume (v, u,e)(x,t) solves (LE), ;. Then, for each e € (0, 1] there exists a
constant C(e) = C(e, T, Cy) > 0 independent of (a, k) such that
Lelv,u,el(T) < Cle),
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3.3 Uniform a-priori estimates for (u, e)

Once the point-wise upper and lower bounds of v(x,t) and r(x,t) are obtained,
one can utilise the parabolic structure:

Dm m 2m
DtU*ﬂTme(M):{"'L Dteanm(LDme):{m}w
v v
to derive the uniform a-priori estimates on u(z,t) and e(x,t).

Lemma 2.2

Assume (v, u,e)(x,t) solves (LE), ;. Then, for each e € (0, 1] there exists a
constant C(e) = C(e, T, Cy) > 0 independent of (a, k) such that
L.[v,u,e](T) < C(e), where o(t) := min{l,t} and

Le[v,u,e](T) = sup/|v—1u e —1,y/a(t)r™ Dyu, o (t)r™ Dye)|*da

te[0,T]

+/ /|(rmDmu,rmee,\/o(t)Dtu,J(t)Dte)|2dxdt.
0 €
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3.3 Some remarks on estimates of (u, e)

(1) Since C(e)~! <w(x,t) < C(e) is restricted in x € [¢, k], it is necessary to
incorporate a cut-off function g. € C*([0, o0]) such that supp(g:) C [e, 00).
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3.3 Some remarks on estimates of (u, e)

(1) Since C(e)~! <w(x,t) < C(e) is restricted in x € [¢, k], it is necessary to
incorporate a cut-off function g. € C*([0, o0]) such that supp(g:) C [e, 00).
However, integration by parts with g. leads to a problematic boundary term:

T r2e
/ {e+ |u|*}(z,t) dadt,
0 Je

which cannot be bounded with the standard parabolic estimate.
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3.3 Some remarks on estimates of (u, e)

(1) Since C(e)~! <w(x,t) < C(e) is restricted in x € [¢, k], it is necessary to
incorporate a cut-off function g. € C*([0, o0]) such that supp(g:) C [e, 00).
However, integration by parts with g. leads to a problematic boundary term:

T r2e
/ {e+ |u|*}(z,t) dadt,
0 Je

which cannot be bounded with the standard parabolic estimate. This can be
resolved by using dissipation terms in the entropy estimate:

2 2m 2 k
// 2u ) |D, (r u)l |D e| }dxdtg/ S(z,0)dz.
0
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3.3 Some remarks on estimates of (u, e)

(1) Since C(e)~! <w(x,t) < C(e) is restricted in x € [¢, k], it is necessary to
incorporate a cut-off function g. € C*([0, o0]) such that supp(g:) C [e, 00).
However, integration by parts with g. leads to a problematic boundary term:

T p2e
/ {e+ |u|*}(z,t) dadt,
0 Je

which cannot be bounded with the standard parabolic estimate. This can be
resolved by using dissipation terms in the entropy estimate:

2 2m 2 k
// 2u ) | D (r U)I |D; ¢l }dxdtS/ S(x,0)dz.
0

(2) The gain of regularity on (u, e), indicated by the weight o(t) = min{1,¢}, is
due to not only parabolic operators, but also the Effective Viscosity Flux:

F = (2u+ NdivU — (P(p,e) — 1)
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(1) Since C(e)~! <w(x,t) < C(e) is restricted in x € [¢, k], it is necessary to
incorporate a cut-off function g. € C*([0, o0]) such that supp(g:) C [e, 00).
However, integration by parts with g. leads to a problematic boundary term:

T r2e
/ {e + |u*}(z,t) dzdt,
0 Je

which cannot be bounded with the standard parabolic estimate. This can be
resolved by using dissipation terms in the entropy estimate:

2 2m 2 k
// 2u ) | D (r U)I |D; ¢l }dxdtS/ S(x,0)dz.
0

(2) The gain of regularity on (u, e), indicated by the weight o(t) = min{1,¢}, is
due to not only parabolic operators, but also the Effective Viscosity Flux:

P (v, ) - 1)

F = (2u+ NdivU — (P(p,e) — 1) = (2u+ A)

Taking div on t_l]e momentum equation, one can verify that
AF = div(pd,U + p(U - V)U).
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