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1.1 Introduction: Equations

For dimensions n = 2, 3, heat-conducting compressible flow is governed by the
following system of partial differential equations:

∂tρ+ div(ρU⃗) = 0 ,

∂t(ρU⃗) + div(ρU⃗ ⊗ U⃗) +∇P = divS ,

∂t(ρE) + div((ρE + P )U⃗) = div(S · U⃗) + div(κQ∇θ) ,

(CNS)

where ρ ≥ 0 is mass density, U⃗ = (U1, . . . , Un) ∈ Rn is velocity, P ≥ 0 is

pressure, E := e+ |U⃗ |2
2 is total energy per unit mass, e is internal energy per unit

mass, θ is temperature, κQ ≥ 0 is heat conduction coefficient, and S is viscous
stress tensor.

Two assumptions: (1) Ideal gas; (2) Polytropic, i.e. e = cV θ. Hence,

1. P = P (ρ, e) = (γ − 1)ρe, where γ > 1.

2. div(κQ∇θ) = κ∆e where κ ≡ κQ/cV ≥ 0.
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1.1 Introduction: Viscous Stress Tensor

The viscous stress tensor, S is given as follows:

S(∇U⃗) := µ(∇U⃗ +∇U⃗⊤) + λIndivU⃗ ,

where In is n× n identity matrix, µ is the shear viscosity coefficient and quantity
2
nµ+ λ is the bulk viscosity coefficient.

We assume µ, λ to be given constants. Then the term divS can be written as the
following second order linear differential operator:

divS(∇U⃗) = LU⃗ := µ△U⃗ + (µ+ λ)∇divU⃗ .

Moreover, we also impose the following physical condition:

µ > 0 and
2

n
µ+ λ ≥ 0 .

The sufficient condition for L to be an elliptic operator is µ > 0 and µ+ λ ≥ 0.
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1.1 Introduction: Equations in Spherical Symmetry

For spherically symmetric solution, it takes the form:

(ρ, U⃗ , e)(x⃗, t) = (ρ(|x⃗|, t), u(|x⃗|, t) x⃗
|x⃗|
, e(|x⃗|, t)), (x⃗, t) ∈ Rn × [0,∞) .

Denote r ≡ |x⃗| and m ≡ n− 1. Then (ρ, u, e)(r, t) satisfies the equations:

∂tρ+ u∂rρ+ ρ
(
∂ru+m

u

r

)
= 0,

ρ∂tu+ ρu∂ru+ ∂rP = β∂r

(∂r(rmu)
rm

)
,

ρ∂te+ ρu∂re+ P
∂r(r

mu)

rm
= D + κ

∂r(r
m∂re)

rm
,

(SNS)

where D := 2µ
(
|∂ru|2 +m

u2

r2

)
+ λ

(
∂ru+m

u

r

)2

, β := 2µ+ λ > 0.

We call it the (Spherically Symmetric) Cauchy Problem if the domain is set in
(r, t) ∈ [0,∞)× [0,∞), with the initial condition:

(ρ, u, e)(r, 0) = (ρ0, u0, e0)(r) for r ∈ [0,∞). (ID)
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1.2 Previous Results: 1D/MD Spherically Symmetric Case

Kazhikhov and Shelukhin 1977 considered one-dimensional(1D) bounded
spatial domain Ω = [a, b], with large smooth initial data such that
0 < infx∈Ω ρ0(x) < supx∈Ω ρ0 <∞. They obtained the global-in-time
existence and uniqueness of a classical solution.

Kawashima and Nishida 1981 extended the result of Kazhikhov-Shelukhin to
the Cauchy Problem in the entire spatial domain x ∈ R. Moreover,

lim
t→∞

∥(ρ, u, e)(·, t)− (ρ, 0, θ)∥L∞(R).

Jiang 1996 considered large, smooth, multi-dimensional(MD) spherically
symmetric initial data in the exterior domain Ω = {x⃗ ∈ Rn : a ≤ |x⃗| <∞}
for a fixed a > 0. He obtained the global-in-time existence and
uniqueness of a spherically symmetric classical solution.

Hoff and Jenssen 2004 considered large, discontinuous, MD spherically
symmetric initial data in a bounded ball: Ω = B(⃗0;R), R > 0. They
obtained a global-in-time spherically symmetric weak solution. The
significance of this result is that the region includes the origin |x⃗| = 0.
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1.2 Previous Results: General MD Without Symmetry

Nash 1962 considered the Cauchy Problem in Ω = Rn, with large
smooth initial data such that C−1

0 ≤ ρ0 ≤ C0 for some C0 > 0. He
obtained the local-in-time existence and uniqueness of a classical
solution.

Lions 1993 considered the equations for isentropic flow, P (ρ) = Aργ ,
with large, possibly discontinuous initial data. Under the assumption
that γ ≥ 3/2 if n = 2 and γ ≥ 9/5 if n = 3, he obtained a
global-in-time finite energy weak solution in a bounded or
periodic domain Ω ⊊ Rn:

ρ0 ∈ Lγ ∩ L1(Ω) and
√
ρ0u0 ∈ L2(Ω)

⇒

{
ρ ∈ L∞(0, T ;Lγ ∩ L1(Ω)) ∩ C([0,∞);Lq(Ω)) , 1 ≤ q < γ

∇u ∈ L2(0, T ;L2(Ω)) , ρ|u|2 ∈ L∞(0, T ;L1(Ω)) .

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022 8 / 30



1.2 Previous Results: General MD Without Symmetry

Nash 1962 considered the Cauchy Problem in Ω = Rn, with large
smooth initial data such that C−1

0 ≤ ρ0 ≤ C0 for some C0 > 0. He
obtained the local-in-time existence and uniqueness of a classical
solution.

Lions 1993 considered the equations for isentropic flow, P (ρ) = Aργ ,
with large, possibly discontinuous initial data. Under the assumption
that γ ≥ 3/2 if n = 2 and γ ≥ 9/5 if n = 3, he obtained a
global-in-time finite energy weak solution in a bounded or
periodic domain Ω ⊊ Rn:

ρ0 ∈ Lγ ∩ L1(Ω) and
√
ρ0u0 ∈ L2(Ω)

⇒

{
ρ ∈ L∞(0, T ;Lγ ∩ L1(Ω)) ∩ C([0,∞);Lq(Ω)) , 1 ≤ q < γ

∇u ∈ L2(0, T ;L2(Ω)) , ρ|u|2 ∈ L∞(0, T ;L1(Ω)) .

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022 8 / 30



1.2 Previous Results: General MD Without Symmetry

Nash 1962 considered the Cauchy Problem in Ω = Rn, with large
smooth initial data such that C−1

0 ≤ ρ0 ≤ C0 for some C0 > 0. He
obtained the local-in-time existence and uniqueness of a classical
solution.

Lions 1993 considered the equations for isentropic flow, P (ρ) = Aργ ,
with large, possibly discontinuous initial data. Under the assumption
that γ ≥ 3/2 if n = 2 and γ ≥ 9/5 if n = 3, he obtained a
global-in-time finite energy weak solution in a bounded or
periodic domain Ω ⊊ Rn:

ρ0 ∈ Lγ ∩ L1(Ω) and
√
ρ0u0 ∈ L2(Ω)

⇒

{
ρ ∈ L∞(0, T ;Lγ ∩ L1(Ω)) ∩ C([0,∞);Lq(Ω)) , 1 ≤ q < γ

∇u ∈ L2(0, T ;L2(Ω)) , ρ|u|2 ∈ L∞(0, T ;L1(Ω)) .

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022 8 / 30



1.2 Previous Results: General MD Without Symmetry

Nash 1962 considered the Cauchy Problem in Ω = Rn, with large
smooth initial data such that C−1

0 ≤ ρ0 ≤ C0 for some C0 > 0. He
obtained the local-in-time existence and uniqueness of a classical
solution.

Lions 1993 considered the equations for isentropic flow, P (ρ) = Aργ ,
with large, possibly discontinuous initial data. Under the assumption
that γ ≥ 3/2 if n = 2 and γ ≥ 9/5 if n = 3, he obtained a
global-in-time finite energy weak solution in a bounded or
periodic domain Ω ⊊ Rn:

ρ0 ∈ Lγ ∩ L1(Ω) and
√
ρ0u0 ∈ L2(Ω)

⇒

{
ρ ∈ L∞(0, T ;Lγ ∩ L1(Ω)) ∩ C([0,∞);Lq(Ω)) , 1 ≤ q < γ

∇u ∈ L2(0, T ;L2(Ω)) , ρ|u|2 ∈ L∞(0, T ;L1(Ω)) .

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022 8 / 30



1.2 Previous Results: General MD Without Symmetry

Nash 1962 considered the Cauchy Problem in Ω = Rn, with large
smooth initial data such that C−1

0 ≤ ρ0 ≤ C0 for some C0 > 0. He
obtained the local-in-time existence and uniqueness of a classical
solution.

Lions 1993 considered the equations for isentropic flow, P (ρ) = Aργ ,
with large, possibly discontinuous initial data. Under the assumption
that γ ≥ 3/2 if n = 2 and γ ≥ 9/5 if n = 3, he obtained a
global-in-time finite energy weak solution in a bounded or
periodic domain Ω ⊊ Rn:

ρ0 ∈ Lγ ∩ L1(Ω) and
√
ρ0u0 ∈ L2(Ω)

⇒

{
ρ ∈ L∞(0, T ;Lγ ∩ L1(Ω)) ∩ C([0,∞);Lq(Ω)) , 1 ≤ q < γ

∇u ∈ L2(0, T ;L2(Ω)) , ρ|u|2 ∈ L∞(0, T ;L1(Ω)) .

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022 8 / 30



2. Main Theorem

Huang, Yucong (Oxford/Edinburgh) Compressible Navier-Stokes Equations August 2022 9 / 30



2.1 Definition of Weak Solution I

Definition 1.1 (Weak Solution)

Given T > 0 and initial data (ρ0, U⃗0, e0)(x⃗) in x⃗ ∈ Rn, we say (ρ, U⃗ , e)(x⃗, t) is a
weak solution to the Cauchy Problem (CNS) and (ID) in (x⃗, t) ∈ Rn × [0, T ] if

1. there exists an upper semi-continuous map r(t) : [0, T ] → [0,∞) and a
constant C0 = C0(ρ0, u0, e0) > 0, such that

sup
t∈[0,T ]

r(t) ≤ C0 and lim
t→0+

r(t) = 0. r(t) is called ”vacuum radius”.

Using r(t), we define the fluid region F , and the vacuum region V as:

F := {(x⃗, t) ∈ Rn × [0, T ] : r(t) < |x⃗| <∞} , V := Rn\F .

2. ρ ∈ L∞
loc(F) and (U⃗ , e) ∈ H1

loc(F). ρ(x⃗, t) = 0 for a.e. (x⃗, t) ∈ V.

3. the weak form of continuity equation holds for any Φ ∈ C1
(
[0, T ]; C1

c (Rn)
)
.

4. the weak form of momentum and energy equations holds for test functions
Ψ ∈ C2

(
[0, T ]; C2

c (Rn)
)
satisfying supp(Ψ) ⊂⊂ F .
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2.2 Global Existence of Weak Solution I

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)

Denote r = |x⃗|. Let (ρ0, U⃗0, e0)(x⃗) = (ρ0(r), u0(r)
x⃗
r , e0(r)) be a spherically

symmetric initial data in x⃗ ∈ Rn such that, there exists C0 > 0 for which it
satisfies the following conditions:

C−1
0 ≤ e0(r), C−1

0 ≤ ρ0(r) ≤ C0 for r ∈ [0,∞),∫ ∞

0

{|ρ0 − 1|2 + |u0|4 + |e0 − 1|2}(r)rmdr ≤ C0,∫ ∞

0

{1
2
ρ0|u0|2 + (γ − 1)G(ρ0) + ρ0ψ(e0)

}
(r)rmdr ≤ C0,

where G(ζ) := 1− ζ + ζ log ζ and ψ(ζ) := ζ − 1− log ζ.

Then for any T > 0, there exists a spherically symmetric weak solution
(ρ, U⃗ , e)(x⃗, t) to the problem (CNS) and (ID) in the domain (x⃗, t) ∈ Rn × [0, T ].
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2.2 Global Existence of Weak Solution II

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)

1. For T > 0, there exists C(T ) = C(C0, T ) > 0 such that

ess sup
t∈[0,T ]

∫
Rn

{
G(ρ) +

ρ|U⃗ |2

2

}
(x⃗, t)dx⃗ ≤ C(T ).

Moreover, there exists a positive, continuous, strictly increasing
function g : [0,∞) → [0,∞) with limy→0+ g(y) = 0 such that,

ess sup
t∈[0,T ]

∫
E
ρe(x⃗, t)dx⃗ ≤ C(T ) + g

( ∫
E
dx⃗

)
,

for all bounded measurable set E ⊂ Rn.
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2.2 Global Existence of Weak Solution III

Theorem 1.1 (G.-Q. Chen, S. Zhu, Y. H., 2022, arXiv:2208.05094)

2. There exists a continuous map r̃(y, t) : (0,∞)× [0, T ] → [0,∞) s.t.

2a. y 7→ r̃(y, t) is strictly monotone increasing for all t ∈ [0, T ],
2b. r(t) = limy→0+ r̃(y, t) for a.e. t ∈ [0, T ],
2c. for a.e. y > 0 and t ∈ [0, T ],∫

r(t)<|x⃗|≤r̃(y,t)

ρ(x⃗, t)dx⃗ = y.

Using this, one defines Fε := {(x⃗, t) ∈ Rn × [0, T ] : |x⃗| ≥ r̃(ε, t)}.
3. For any ε > 0, there exists C(ε) = C(ε, T, C0) > 0 such that for all

(x⃗, t), (y⃗, t), (x⃗, s), (x⃗, t) ∈ Fε with 0 < s < t,

t|e(x⃗, t)− e(y⃗, t)|+ t
1
2 |U⃗(x⃗, t)− U⃗(y⃗, t)| ≤ C(ε)|x⃗− y⃗|

1
2 ,

s|e(x⃗, t)− e(x⃗, s)|+ s
1
2 |U⃗(x⃗, t)− U⃗(x⃗, s)| ≤ C(ε)|t− s|

1
4 ,

C(ε)−1 ≤ ρ(x⃗, t) ≤ C(ε), t
1
4 |U⃗(x⃗, t)|+ t

1
2 e(x⃗, t) ≤ C(ε).
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2.2 Vacuum Radius and y-Mass Radius
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3. Main Strategy
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3.1 Spherically Symmetric Exterior Problem I

If one supposes that the map x⃗ 7→ (U⃗ ,∇e)(x⃗, t) is continuous at the origin
x⃗ = 0⃗. Then the spherically symmetric condition implies that

u(0, t) = ∂re(0, t) = 0 for all t ∈ [0,∞). (O)

The main difficulty is the singular terms such as mβ∂r
(
r−1u

)
and

κr−1∂re in the equations.

Motivated by (O), one introduces the Exterior Problem with parameter
a ∈ (0, 1), by imposing the boundary condition:

u(a, t) = ∂re(a, t) = 0 for t ∈ [0,∞) at r = a.

Note that the above condition corresponds to a physical model where
there is an insulating solid ball of radius a ∈ (0, 1) centred at the origin,
and we call it the Exterior Boundary Condition.
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3.1 Spherically Symmetric Exterior Problem II

Furthermore, we impose the condition near far-field region |x⃗| → ∞:

lim
r→∞

(ρ, u, e, ∂re) (r, t) = (1, 0, 1, 0) for all t ∈ [0,∞) .

Combining with the previously mentioned exterior boundary condition, we
define the Eulerian (Spherically Symmetric) Exterior Problem with
radius a ∈ (0, 1) as

(SNS) in [a,∞)× [0,∞),

u(a, t) = ∂re(a, t) = 0

lim
r→∞

(ρ, u, e, ∂re)(r, t) = (1, 0, 1, 0)
for all t ∈ [0,∞),

(ρ, u, e)(r, 0) = (ρ0a, u
0
a, e

0
a)(r) for all r ∈ [a,∞).

(EE)a

where (ρ0a, u
0
a, e

0
a)(r) is the modified initial data from (ρ0, u0, e0)(r).
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3.2 Lagrangian Coordinate: General MD Case

Let (ρ, U⃗ , e)(y⃗, t) in (y⃗, t) ∈ Rn × [0,∞) be a solution to (CNS) such that
C−1 ≤ ρ ≤ C for some C > 0.

For general multi-dimensional flow, Let X⃗ : Rn × [0,∞) → Rn be the
characteristic curve satisfying:

dX⃗

dt
(z⃗, t) = U⃗(X⃗(z⃗, t), t) for t ∈ [0,∞),

X⃗(z⃗, 0) = φ0(z⃗) for z⃗ ∈ Rn,

(Char)

where φ0 : Rn → Rn is a given diffeomorphism.

Then the Eulerian coordinate variables (y⃗, t) ∈ Rn × [0,∞) and
Lagrangian coordinate variables (z⃗, t) ∈ Rn × [0,∞) satisfy:

(y⃗, t) = (X⃗(z⃗, t), t)
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3.2 Lagrangian Coordinate: Spherical Exterior Problem

Let (ρa, U⃗a, ea)(y⃗, t) = (ρa(|y⃗|, t), ua(|y⃗|, t) y⃗
|y⃗| , e(|y⃗|, t)) be a symmetric solution

to the Exterior Problem in {|y⃗| ≥ a}. We denote r ≡ |y⃗| and x ≡ |z⃗|.

Set φ0(z⃗) as the spherically symmetric map:

φ0(z⃗) = r̃0a(|z⃗|)
z⃗

|z⃗|
where x =

∫ r̃0a(x)

a

ρ0a(r)r
mdr for all x ≥ 0.

The choice of φ0 physically means that x ≥ 0 amount of initial mass is contained
in the annular domain between r = a and r = r̃0a(x).

By uniqueness of the solution to (Char), z⃗ → X⃗(z⃗, t) is spherically symmetric,

thus we can define r̃a(|z⃗|, t) :=
√
|X⃗(z⃗, t)|2. Suppose r̃a ≥ a, then{

∂tr̃a(x, t) = ua(r̃a(x, t), t) for t ∈ [0, T ],

r̃a(x, 0) = r̃0a(x) for x ≥ 0.
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3.2 Lagrangian Coordinate: Spherical Exterior Problem
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a
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3.2 Lagrangian Reformulation

Under spherical symmetry, the Lagrangian variables (x, t) is related to the
Eulerian variables (r, t) via the relation: r = r̃a(x, t).

Denote ṽ(x, t) := 1/ρa(r̃a(x, t), t), (ũ, ẽ)(x, t) := (ua, ea)(r̃a(x, t), t), and
r̃(x, t) := r̃a(x, t). Then equations (SNS) can be reformulated as

Dtṽ = Dx(r̃
mũ)

Dtũ+ r̃mDxp(ṽ, ẽ) = βr̃mDx

(Dx(r̃
mũ)

ṽ

)
Dtẽ− κDx

( r̃2m
ṽ
Dxẽ

)
= G(r̃, ṽ, ũ, ẽ)

in (x, t) ∈ [0,∞)2, (LNS)

where G(r, v, u, e) = β
|Dx(r

mu)|2

v
− p(v, e)Dx(r

mu)− 2mµDx(r
m−1u2),

and p(v, e) := (γ − 1)e/v. Moreover (LNS) is supplemented with the non-linear
coefficient r̃ = r̃(x, t) defined by:

r̃(x, t) :=
(
an + n

∫ x

0

ṽ(z, t)dz
) 1

n

.
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mũ)
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ṽ
Dxẽ

)
= G(r̃, ṽ, ũ, ẽ)
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(Dx(r̃
mũ)
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3.2 Approximation problems in finite annuli

(1) Construct (va,k, ua,k, ea,k) to the approximation Lagrangian problem:

(LNS)

ra,k(x, t) =
(
an + n

∫ x

0

va,k(y, t)dy
) 1

n in [0, k]× [0,∞),

ua,k(0, t) = Dxea,k(0, t) = 0

ua,k(k, t) = Dxea,k(k, t) = 0
for t ∈ [0,∞),

(va,k, ua,k, ea,k)|t=0 = (v0a,k, u
0
a,k, e

0
a,k) for x ∈ [0, k].

(LE)a,k

(2) Convert the approximate solutions into Eulerian coordinate:

(ρ̄a,k, ūa,k, ēa,k)(r, t) = (v−1
a,k, ua,k, ea,k)(xa,k(r, t), t)

where r 7→ xa,k(r, t) is the inverse of x 7→ ra,k(x, t).

(3) Extend (ρ̄a,k, ūa,k, ēa,k)(r, t) into r ∈ [0,∞) by cut-off function φa,k(r):

ρ̃a,k = ρ̄a,kφa,k+(1−φa,k), ẽa,k = ēa,kφa,k+(1−φa,k), ũa,k = ūa,kφa,k.

(4) Take limit k → ∞, then take limit a→ 0+ to get (ρ, u, e) as in Theorem 1.1.
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3.3 Uniform a-priori estimates: bounds on density I

To take limit k → ∞ and a→ 0+, some uniform estimates on (va,k, ua,k, ea,k)
are required. This is achieved by first obtaining the uniform point-wise upper
and lower bounds on density.

Lemma 2.1 (Entropy Estimate)

Set ψ(ζ) := ζ − log ζ − 1, and define S := (γ − 1)ψ(v) + ψ(e) + |u|2
2 to be the

entropy. If (v, u, e) is a solution to the approximation Lagrangian Exterior
Problem (LE)a,k then∫ k

0

S(x, t)dx+

∫ t

0

∫ k

0

{(2µ
n

+ λ
) |Dx(r

mu)|2

ve
+ κ

r2m|Dxe|2

ve2

}
dxdt

=

∫ k

0

S(x, 0)dx.
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3.3 Uniform a-priori estimates: bounds on density II

Substitute the continuity equation Dtv = Dx(r
mu) into the momentum equation:

Dtu+ rmDxp = βrmDx

(Dx(r
mu)

v

)
, where β = 2µ+ λ > 0,

then multiply both sides by r−m, and since Dtr(x, t) = u(x, t), we have

Dt

( u
rm

)
+m

|u|2

rn
+Dxp = βDtDx log v.

Integrating the above equation in the region (y, s) ∈ [x1, x2]× [0, t] and then take
exponential on both sides, we get the representation formula for density

v0(x2)v(x1, t)

v0(x1)v(x2, t)

= exp
(∫ x2

x1

u

βrm
dy

∣∣∣s=0

s=t
+

∫ t

0

γ − 1

β

e

v
ds

∣∣∣y=x1

y=x2

−
∫ t

0

∫ x2

x1

m|u|2

βrn
dyds

)
≡ I.
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3.3 Uniform a-priori estimates: bounds on density III

v0(x2)v(x1, t)

v0(x1)v(x2, t)

= exp
(∫ x2

x1

u

βrm
dy

∣∣∣s=0

s=t
+

∫ t

0

γ − 1

β

e

v
ds

∣∣∣y=x1

y=x2

−
∫ t

0

∫ x2

x1

m|u|2

βrn
dyds

)
≡ I.

I can be bounded by Grönwall’s inequality and the entropy estimate, Lemma 2.1.

From this formula for density, we can determine two explicit functions
v(x, t), v(x, t) : [0, k]× [0,∞] → (0,∞), which are independent of (a, k) so that

v(ε, T ) ≤ v(x, t) ≤ v(ε, T ) for all (x, t) ∈ [ε, k]× [0, T ], for each ε > 0.

The restriction x ∈ [ε, k] comes from the lower bound of r(x, t). By entropy

estimate
∫ k

0
ψ(v)dx ≤ C0, and Jensen’s inequality, one has for each ε > 0,(
nεψ−1

−
(C0

ε

)) 1
n ≤ r(x, t) in (x, t) ∈ [ε, k]× [0,∞).

where ψ−1
− (·) : [0,∞) → (0, 1] is the left branch inverse of ψ(ζ) = ζ − 1− log ζ.
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− (·) : [0,∞) → (0, 1] is the left branch inverse of ψ(ζ) = ζ − 1− log ζ.
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3.3 Uniform a-priori estimates: bounds on density III

v0(x2)v(x1, t)

v0(x1)v(x2, t)

= exp
(∫ x2

x1

u

βrm
dy

∣∣∣s=0

s=t
+

∫ t

0

γ − 1

β

e

v
ds

∣∣∣y=x1

y=x2

−
∫ t

0

∫ x2

x1

m|u|2

βrn
dyds

)
≡ I.

I can be bounded by Grönwall’s inequality and the entropy estimate, Lemma 2.1.
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3.3 Uniform a-priori estimates for (u, e)

Once the point-wise upper and lower bounds of v(x, t) and r(x, t) are obtained,
one can utilise the parabolic structure:

Dtu− βrmDx

(Dx(r
mu)

v

)
= {· · · }, Dte− κDx

(r2m
v
Dxe

)
= {· · · },

to derive the uniform a-priori estimates on u(x, t) and e(x, t).

Lemma 2.2

Assume (v, u, e)(x, t) solves (LE)a,k. Then, for each ε ∈ (0, 1] there exists a
constant C(ε) = C(ε, T, C0) > 0 independent of (a, k) such that
Lε[v, u, e](T ) ≤ C(ε), where σ(t) := min{1, t} and

Lε[v, u, e](T ) := sup
t∈[0,T ]

∫ k

ε

|(v − 1, u2, e− 1,
√
σ(t)rmDxu, σ(t)r

mDxe)|2dx

+

∫ T

0

∫ k

ε

|(rmDxu, r
mDxe,

√
σ(t)Dtu, σ(t)Dte)|2dxdt.
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3.3 Some remarks on estimates of (u, e)

(1) Since C(ε)−1 ≤ v(x, t) ≤ C(ε) is restricted in x ∈ [ε, k], it is necessary to
incorporate a cut-off function gε ∈ C1([0,∞]) such that supp(gε) ⊆ [ε,∞).
However, integration by parts with gε leads to a problematic boundary term:∫ T

0

∫ 2ε

ε

{e+ |u|2}(x, t) dxdt,

which cannot be bounded with the standard parabolic estimate. This can be
resolved by using dissipation terms in the entropy estimate:∫ T

0

∫ k

0

{(2µ
n

+ λ
) |Dx(r

mu)|2

ve
+ κ

r2m|Dxe|2

ve2

}
dxdt ≤

∫ k

0

S(x, 0)dx.

(2) The gain of regularity on (u, e), indicated by the weight σ(t) = min{1, t}, is
due to not only parabolic operators, but also the Effective Viscosity Flux:

F := (2µ+ λ)divU⃗ − (P (ρ, e)− 1) = (2µ+ λ)
Dx(r

mu)

v
− (p(v, e)− 1).

Taking div on the momentum equation, one can verify that
△F = div

(
ρ∂tU⃗ + ρ(U⃗ · ∇)U⃗

)
.
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