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her head

1. Prover simulates a multiparty 

computation of a function 𝑓
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• Kales and Zaverucha proposed an MPCitH-based proof system BN++

• Requires only random oracle and one-way function

• Sacrificing-based inner product check

• Wants to check multiplication triples 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 𝑖 such that 𝑥𝑖 ⋅ 𝑦𝑖 = 𝑧𝑖
• Inner product triple 𝑎𝑖 , 𝑦𝑖 , 𝑐 such that σ𝑖 𝑎𝑖𝑦𝑖 = 𝑐

• For random 𝜀𝑖 𝑖,
𝛼𝑖 = 𝜀𝑖 ⋅ 𝑥𝑖 + 𝑎𝑖
Open 𝛼𝑖

𝑣 =

𝑖

𝛼𝑖 𝑦𝑖 − 𝜀𝑖 𝑧𝑖 + 𝑐

Check 𝑣 = 0

• Soundness = 1/|𝔽|
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Efficient Circuit for BN++

• Arithmetic in a large field (of size ≈ 𝜆)

• Small field has a poor soundness

• Small number of multiplications (linear maps are free)

• Repeated multiplier

• If the same multiplier is repeated, the signer can save the signature size

• 𝑥1 ⋅ 𝑦 = 𝑧1, 𝑥2 ⋅ 𝑦 = 𝑧2

• Known output share

• If an output of a multiplication is already known, then the signer can save the signature size

• E.g., 𝑦 = 𝑥−1 → 𝑥𝑦 = 1, 1 is known without any computation
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• Low multiplicative complexity

• Some symmetric primitives based on large S-boxes have been broken by algebraic attacks

• MiMC (AC 16, AC 20)

• Agrasta (C 18, AC 21)

• Jarvis/Friday (ePrint 18, AC 19)

• Chaghri (CCS 22, EC 23)

Sufficient security

against

algebraic attacks

Best performance 

when combined to 

BN++
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• Inverse S-box (𝑥 ↦ 𝑥−1) is widely used in MPC/ZKP-friendly ciphers

• High degree, but quadratic relation (𝑥𝑦 = 1)

• Invertible

• Nice DC/LC resistance

• But, produces many linearly independent quadratic equations

Inv𝑥 𝑦
𝑛

ቐ
𝑓1 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 = 0

⋮
𝑓5𝑛 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 = 0

5𝑛 quadratic equations

More equations lead to a 

weaker resistance against 

algebraic attacks! 

c.f. optimally 𝑛 equations



Candidates of Appropriate S-box

• Niho exponent

• 𝑥 ↦ 𝑥2
𝑠+2𝑠/2−1 over 𝔽2𝑛 , 𝑛 = 2𝑠 + 1

• 𝑛 equations, high-degree

• 2 multiplications, odd-length field

• NGG exponent (Nawaz et al., 2009)

• 𝑥 ↦ 𝑥2
𝑠+1+2𝑠−1−1 over 𝔽2𝑛 , 𝑛 = 2𝑠

• 2𝑛 equations, even-length field, good 
DC/LC resistance

• 2 multiplications 

• Mersenne exponent

• 𝑥 ↦ 𝑥2
𝑠−1 over 𝔽2𝑛

• 3𝑛 equations, even-length field, single 
multiplication

• moderate DC/LC resistance

• Gold exponent

• 𝑥 ↦ 𝑥2
𝑠+1 over 𝔽2𝑛

• Even-length field, single multiplication, 
good DC/LC resistance

• 4𝑛 equations
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• If prover needs to check multiple multiplications with a same multiplier,

• e.g., 𝑥1 ⋅ 𝑦 = 𝑧1, 𝑥2 ⋅ 𝑦 = 𝑧2

• Then, the prover can prove them in a batched way

• More same multiplier → Smaller signature size

𝑆1 𝑆2 𝑆3

𝑆1

𝑆2

𝑆3

Serial S-box 

(Limited application of repeated multiplier)

Parallel S-box 

(Full application of repeated multiplier)
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Recent Analysis on AIM (Jul. 24)

• Fukang Liu and Mohammad Mahzoun proposed a fast exhaustive search attack on AIM*

• It achieves 10-12 bits smaller complexity compared to brute-force attack on AIM

• The main vulnerability was that there are low-degree equations with 𝑛 Boolean variables

• Increasing exponents resolves this vulnerability

* F. Liu and M. Mahzoun. “Algebraic Attacks on RAIN and AIM Using Equivalent Representations”. Cryptology ePrint Archive. Report 2023/1133 



Recent Analysis on AIM (Jul. 27)

• Liu introduce another possible vulnerability to our team*

• Setting a new variable 𝑤 = pt−1 leads to easier system than expected

• AIM is claimed to be secure under an ℓ𝑛-variable system with 3ℓ𝑛 quadratic equations

• A 2𝑛-variable system including 5𝑛 quadratic equations and 5𝑛 cubic equations

pt ⋅ 𝑤 = 1

Lin pt2
𝑒1𝑤, pt2

𝑒1𝑤, pt2
𝑒1𝑤 ⋅ pt + ct = Lin pt2

𝑒1𝑤, pt2
𝑒1𝑤, pt2

𝑒1𝑤
2𝑒∗

Lin pt2
𝑒1𝑤, pt2

𝑒1𝑤, pt2
𝑒1𝑤 ⋅ 1 + 𝑤 ⋅ ct = 𝑤 ⋅ Lin pt2

𝑒1𝑤, pt2
𝑒1𝑤, pt2

𝑒1𝑤
2𝑒∗

• Note that this attack is not practically feasible on AIM

* In private communication
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• Mer 𝑒 −1 𝑥 = 𝑥𝑎

• 𝑎 = 2𝑒 − 1 −1 mod 2𝑛 − 1

• More resistant to algebraic attacks

• Larger exponents

• To mitigate fast exhaustive search

• Fixed constant addition

• To differentiate inputs of S-boxes

• Increase the degree of composite power 
function

𝑥𝑎 𝑏 vs 𝑥𝑎 + 𝑐 𝑏

AIM2: Secure Patch for Algebraic Attacks (In Progress)
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Analysis on AIM2

• Algebraic attacks

• Fast exhaustive search: mitigated by high exponents

• Brute-force search of quadratic equations

• Toy experiment of good intermediate variables

• Other attacks

• Exhaustive key search: slightly increased complexity

• Very recent analysis (Sep. 2) of Markku is also mitigated (and it will be updated)

• LC/DC: almost same

• Quantum attacks: complexities change not critically

• Performance

• Signature size: exactly the same

• Sign/verify time: about 10% increase

• Preliminary version can be found in our website!
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AIMer Signature Scheme

• AIMer = BN++ proof of knowledge of AIM input

• Security is based on the one-wayness of AIM in the ROM

• Advantages

• Security based on only symmetric primitives

• Fast key generation

• Small key sizes

• Trade-offs between signatures size and speed

• Randomness misuse resistance

• Limitations

• Newly-designed symmetric primitive AIM

• Moderately large signature size (3.8~5.9 KB)

• Slow signing/verifying speed (0.59~22 ms)

Prover Verifier

1

2 3
AIM

BN++ proof of AIM



Performance Comparison

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Dilithium2 1312 2420 0.10 0.03

Falcon-512 897 690 0.27 0.04

SPHINCS+-128s 32 7856 315.74 0.35

SPHINCS+-128f 32 17088 16.32 0.97

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

Banquet 32 19776 7.09 5.24

Rainier3 32 8544 0.97 0.89

BN++Rain3 32 6432 0.83 0.77

AIMer-L1 (Not updated) 32 5904 0.59 0.53

AIMer-L1 (Not updated) 32 3840 22.29 21.09



Some Remarks

• Remark

• We submitted AIMer to KpqC and NIST PQC competition

• Our homepage: https://aimer-signature.org

• We are waiting for third-party analysis!

• Future work

• Updates on the specification document

• QROM security of AIMer

• More optimization on BN++

https://aimer-signature.org/


Thank you!
Check out our website!
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