The AIMer Signature Scheme

Seongkwang Kim ${ }^{1}$
Mingyu Cho ${ }^{1}$
Jihoon Kwon ${ }^{1}$
Joohee Lee ${ }^{3}$
Sangyub Lee ${ }^{1}$
Mincheol Son ${ }^{2}$
${ }^{1}$ Samsung SDS, Seoul, Korea
${ }^{2}$ KAIST, Daejeon, Korea
${ }^{3}$ Sungshin Women's University, Seoul, Korea
SAMSUNG SDS KAIST

MPC-in-the-Head Paradigm

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

1. Prover simulates a multiparty computation of a function f

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

1. Prover simulates a multiparty computation of a function f
2. Prover commits to all the views of the parties

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

1. Prover simulates a multiparty computation of a function f
2. Prover commits to all the views of the parties
3. Verifier sends a random challenge

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

1. Prover simulates a multiparty computation of a function f
2. Prover commits to all the views of the parties
3. Verifier sends a random challenge
4. Prover opens the challenged view
5. Verifier checks consistency

BN++ Proof System

- Kales and Zaverucha proposed an MPCitH-based proof system BN++
- Requires only random oracle and one-way function

BN++ Proof System

- Kales and Zaverucha proposed an MPCitH-based proof system BN++
- Requires only random oracle and one-way function
- Sacrificing-based inner product check
- Wants to check multiplication triples $\left\{\left(x_{i}, y_{i}, z_{i}\right)\right\}_{i}$ such that $x_{i} \cdot y_{i}=z_{i}$
- Inner product triple $\left(\left(a_{i}, y_{i}\right), c\right)$ such that $\sum_{i} a_{i} y_{i}=c$
- For random $\left\{\varepsilon_{i}\right\}_{i}$,

$$
\begin{aligned}
& {\left[\alpha_{i}\right]=\varepsilon_{i} \cdot\left[x_{i}\right]+\left[a_{i}\right]} \\
& \text { Open } \alpha_{i} \\
& {[v]=\sum_{i}\left(\alpha_{i}\left[y_{i}\right]-\varepsilon_{i}\left[z_{i}\right]\right)+[c]} \\
& \text { Check } v=0
\end{aligned}
$$

- Soundness = $1 /|\mathbb{F}|$

Efficient Circuit for BN++

- Arithmetic in a large field (of size $\approx \lambda$)
- Small field has a poor soundness
- Small number of multiplications (linear maps are free)

Efficient Circuit for BN++

- Arithmetic in a large field (of size $\approx \lambda$)
- Small field has a poor soundness
- Small number of multiplications (linear maps are free)
- Repeated multiplier
- If the same multiplier is repeated, the signer can save the signature size
- $x_{1} \cdot y=z_{1}, x_{2} \cdot y=z_{2}$

Efficient Circuit for BN++

- Arithmetic in a large field (of size $\approx \lambda$)
- Small field has a poor soundness
- Small number of multiplications (linear maps are free)
- Repeated multiplier
- If the same multiplier is repeated, the signer can save the signature size
- $x_{1} \cdot y=z_{1}, x_{2} \cdot y=z_{2}$
- Known output share
- If an output of a multiplication is already known, then the signer can save the signature size
- E.g., $y=x^{-1} \rightarrow x y=1,1$ is known without any computation

Symmetric Primitive AIM

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
- S-boxes on large field
- Low multiplicative complexity

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
- S-boxes on large field
- Low multiplicative complexity
- Some symmetric primitives based on large S-boxes have been broken by algebraic attacks
- MiMC (AC 16, AC 20)
- Agrasta (C 18, AC 21)
- Jarvis/Friday (ePrint 18, AC 19)
- Chaghri (CCS 22, EC 23)

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
- S-boxes on large field
- Low multiplicative complexity
- Some symmetric primitives based on large S-boxes have been broken by algebraic attacks
- MiMC (AC 16, AC 20)
- Agrasta (C 18, AC 21)
- Jarvis/Friday (ePrint 18, AC 19)
- Chaghri (CCS 22, EC 23)

Inverse S-box

- Inverse S-box ($x \mapsto x^{-1}$) is widely used in MPC/ZKP-friendly ciphers
- High degree, but quadratic relation $(x y=1)$
- Invertible
- Nice DC/LC resistance
- But, produces many linearly independent quadratic equations

Inverse S-box

- Inverse S-box ($x \mapsto x^{-1}$) is widely used in MPC/ZKP-friendly ciphers
- High degree, but quadratic relation $(x y=1)$
- Invertible
- Nice DC/LC resistance
- But, produces many linearly independent quadratic equations

$5 n$ quadratic equations
c.f. optimally n equations

Inverse S-box

- Inverse S-box ($x \mapsto x^{-1}$) is widely used in MPC/ZKP-friendly ciphers
- High degree, but quadratic relation $(x y=1)$
- Invertible
- Nice DC/LC resistance
- But, produces many linearly independent quadratic equations

More equations lead to a weaker resistance against algebraic attacks!
$5 n$ quadratic equations
c.f. optimally n equations

Candidates of Appropriate S-box

- Niho exponent
- $x \mapsto x^{2^{s}+2^{s / 2}-1}$ over $\mathbb{F}_{2^{n}, n=2 s+1}$
- n equations, high-degree
- 2 multiplications, odd-length field
- NGG exponent (Nawaz et al., 2009)
- $x \mapsto x^{2^{s+1}+2^{s-1}-1}$ over $\mathbb{F}_{2^{n}, n=2 s}$
- $2 n$ equations, even-length field, good DC/LC resistance
- 2 multiplications
- Mersenne exponent
- $x \mapsto x^{2^{s}-1}$ over $\mathbb{F}_{2^{n}}$
- $3 n$ equations, even-length field, single multiplication
- moderate DC/LC resistance
- Gold exponent
- $x \mapsto x^{2^{s}+1}$ over $\mathbb{F}_{2^{n}}$
- Even-length field, single multiplication, good DC/LC resistance
- $4 n$ equations

Repetitive Structure for BN++

- Repeated multiplier technique (in BN++)
- If prover needs to check multiple multiplications with a same multiplier,
- e.g., $x_{1} \cdot y=z_{1}, x_{2} \cdot y=z_{2}$
- Then, the prover can prove them in a batched way
- More same multiplier \rightarrow Smaller signature size

Repetitive Structure for BN++

- Repeated multiplier technique (in BN++)
- If prover needs to check multiple multiplications with a same multiplier,
- e.g., $x_{1} \cdot y=z_{1}, x_{2} \cdot y=z_{2}$
- Then, the prover can prove them in a batched way
- More same multiplier \rightarrow Smaller signature size

Serial S-box
(Limited application of repeated multiplier)

Parallel S-box (Full application of repeated multiplier)

Symmetric Primitive AIM

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance

Symmetric Primitive AIM

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance
- Repetitive structure
- Parallel application of S-boxes
- Feed-forward construction
- Fully exploit the BN++ optimizations
- Locally-computable output share

Symmetric Primitive AIM

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance
- Repetitive structure
- Parallel application of S-boxes
- Feed-forward construction
- Fully exploit the BN++ optimizations
- Locally-computable output share
- Randomized structure
- Affine layer is generated from XOF

Symmetric Primitive AIM

Scheme	λ	n	ℓ	e_{1}	e_{2}	e_{3}	e_{*}
AIM-I	128	128	2	3	27	-	5
AIM-III	192	192	2	5	29	-	7
AIM-V	256	256	3	3	53	7	5

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance
- Repetitive structure
- Parallel application of S-boxes
- Feed-forward construction
- Fully exploit the BN++ optimizations
- Locally-computable output share
- Randomized structure
- Affine layer is generated from XOF

Analyses on AIM

Recent Analysis on AIM (Jul. 24)

- Fukang Liu and Mohammad Mahzoun proposed a fast exhaustive search attack on AIM*
- It achieves 10-12 bits smaller complexity compared to brute-force attack on AIM
- The main vulnerability was that there are low-degree equations with n Boolean variables
- Increasing exponents resolves this vulnerability

[^0]
Recent Analysis on AIM (Jul. 27)

- Liu introduce another possible vulnerability to our team*
- Setting a new variable $w=\mathrm{pt}^{-1}$ leads to easier system than expected
- AIM is claimed to be secure under an ℓn-variable system with $3 \ell n$ quadratic equations
- A $2 n$-variable system including $5 n$ quadratic equations and $5 n$ cubic equations

$$
\left\{\begin{array}{c}
\mathrm{pt} \cdot w=1 \\
\operatorname{Lin}\left(\mathrm{pt}^{2^{e_{1}}} w, \mathrm{pt}^{2^{e_{1}}} w, \mathrm{pt}^{2^{e_{1}}} w\right) \cdot(\mathrm{pt}+\mathrm{ct})=\operatorname{Lin}\left(\mathrm{pt}^{2^{e_{1}}} w, \mathrm{pt}^{2^{e_{1}}} w, \mathrm{pt}^{2^{e_{1}}} w\right)^{2^{e_{*}}} \\
\operatorname{Lin}\left(\mathrm{pt}^{2^{e_{1}}} w, \mathrm{pt}^{2^{e_{1}}} w, \mathrm{pt}^{2^{e_{1}}} w\right) \cdot(1+w \cdot \mathrm{ct})=w \cdot \operatorname{Lin}\left(\mathrm{pt}^{2^{e_{1}}} w, \mathrm{pt}^{2^{e_{1}}} w, \mathrm{pt}^{2^{e_{1}}} w\right)^{2^{e_{*}}}
\end{array}\right.
$$

- Note that this attack is not practically feasible on AIM

AIM2: Secure Patch for Algebraic Attacks (In Progress)

- Inverse Mersenne S-box
- $\operatorname{Mer}[e]^{-1}(x)=x^{a}$
- $a=\left(2^{e}-1\right)^{-1} \bmod \left(2^{n}-1\right)$
- More resistant to algebraic attacks

AIM2: Secure Patch for Algebraic Attacks (In Progress)

- Inverse Mersenne S-box
- $\operatorname{Mer}[e]^{-1}(x)=x^{a}$
- $a=\left(2^{e}-1\right)^{-1} \bmod \left(2^{n}-1\right)$
- More resistant to algebraic attacks
- Larger exponents
- To mitigate fast exhaustive search

AIM2: Secure Patch for Algebraic Attacks (In Progress)

- Inverse Mersenne S-box
- $\operatorname{Mer}[e]^{-1}(x)=x^{a}$
- $a=\left(2^{e}-1\right)^{-1} \bmod \left(2^{n}-1\right)$
- More resistant to algebraic attacks
- Larger exponents
- To mitigate fast exhaustive search
- Fixed constant addition
- To differentiate inputs of S-boxes
- Increase the degree of composite power function

$$
\left(x^{a}\right)^{b} \text { vs }\left(x^{a}+c\right)^{b}
$$

Analysis on AIM2

- Algebraic attacks
- Fast exhaustive search: mitigated by high exponents
- Brute-force search of quadratic equations
- Toy experiment of good intermediate variables

Analysis on AIM2

- Algebraic attacks
- Fast exhaustive search: mitigated by high exponents
- Brute-force search of quadratic equations
- Toy experiment of good intermediate variables
- Other attacks
- Exhaustive key search: slightly increased complexity
- Very recent analysis (Sep. 2) of Markku is also mitigated (and it will be updated)
- LC/DC: almost same
- Quantum attacks: complexities change not critically

Analysis on AIM2

- Algebraic attacks
- Fast exhaustive search: mitigated by high exponents
- Brute-force search of quadratic equations
- Toy experiment of good intermediate variables
- Other attacks
- Exhaustive key search: slightly increased complexity
- Very recent analysis (Sep. 2) of Markku is also mitigated (and it will be updated)
- LC/DC: almost same
- Quantum attacks: complexities change not critically
- Performance
- Signature size: exactly the same
- Sign/verify time: about 10% increase

Analysis on AIM2

- Algebraic attacks
- Fast exhaustive search: mitigated by high exponents
- Brute-force search of quadratic equations
- Toy experiment of good intermediate variables
- Other attacks
- Exhaustive key search: slightly increased complexity
- Very recent analysis (Sep. 2) of Markku is also mitigated (and it will be updated)
- LC/DC: almost same
- Quantum attacks: complexities change not critically
- Performance
- Signature size: exactly the same
- Sign/verify time: about 10% increase
- Preliminary version can be found in our website!

The AIMer Signature Scheme

AIMer Signature Scheme

- AIMer $=\mathrm{BN}++$ proof of knowledge of AIM input
- Security is based on the one-wayness of AIM in the ROM

AIMer Signature Scheme

- AIMer $=\mathrm{BN}++$ proof of knowledge of AIM input
- Security is based on the one-wayness of AIM in the ROM
- Advantages
- Security based on only symmetric primitives
- Fast key generation
- Small key sizes
- Trade-offs between signatures size and speed
- Randomness misuse resistance

AIMer Signature Scheme

- AIMer $=\mathrm{BN}++$ proof of knowledge of AIM input
- Security is based on the one-wayness of AIM in the ROM
- Advantages
- Security based on only symmetric primitives
- Fast key generation
- Small key sizes
- Trade-offs between signatures size and speed
- Randomness misuse resistance
- Limitations
- Newly-designed symmetric primitive AIM
- Moderately large signature size (3.8~5.9 KB)
- Slow signing/verifying speed (0.59~22 ms)

Performance Comparison

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Dilithium2	1312	2420	0.10	0.03
Falcon-512	897	690	0.27	0.04
SPHINCS+$^{+}$-128s	32	7856	315.74	0.35
SPHINCS+-128f	32	17088	16.32	0.97
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet	32	19776	7.09	5.24
Rainier			0.97	0.89
BN++Rain	32	8544	0.83	0.77
AIMer-L1 (Not updated)	32	6432	0.59	0.53
AIMer-L1 (Not updated)	32	3804	22.29	21.09

Some Remarks

- Remark
- We submitted AIMer to KpqC and NIST PQC competition
- Our homepage: https://aimer-signature.org
- We are waiting for third-party analysis!
- Future work
- Updates on the specification document
- QROM security of AIMer
- More optimization on BN++

Thank you!

Check out our website!

[^0]: * F. Liu and M. Mahzoun. "Algebraic Attacks on RAIN and AIM Using Equivalent Representations". Cryptology ePrint Archive. Report 2023/1133

