The AlMer Signature Scheme

Seongkwang Kim1Jihoon Cho1Mingyu Cho1Jincheol Ha2Jihoon Kwon1Byeonghak Lee1Joohee Lee3Jooyoung Lee2Sangyub Lee1Dukjae Moon1Mincheol Son2Hyojin Yoon11 Samsung SDS, Seoul, Korea

³ Sungshin Women's University, Seoul, Korea

KAIS

SAMSUNG SDS

² KAIST, Daejeon, Korea

SUNGSHIN

Oxford PQC Summit 2023

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head
 - 1. Prover simulates a multiparty computation of a function *f*

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head
 - 1. Prover simulates a multiparty computation of a function *f*
 - 2. Prover commits to all the views of the parties

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head
 - 1. Prover simulates a multiparty computation of a function *f*
 - 2. Prover commits to all the views of the parties
 - 3. Verifier sends a random challenge

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head
 - 1. Prover simulates a multiparty computation of a function *f*
 - 2. Prover commits to all the views of the parties
 - 3. Verifier sends a random challenge
 - 4. Prover opens the challenged view
 - 5. Verifier checks consistency

BN++ Proof System

- Kales and Zaverucha proposed an MPCitH-based proof system BN++
- Requires only random oracle and one-way function

BN++ Proof System

- Kales and Zaverucha proposed an MPCitH-based proof system BN++
- Requires only random oracle and one-way function
- Sacrificing-based inner product check
 - Wants to check multiplication triples $\{(x_i, y_i, z_i)\}_i$ such that $x_i \cdot y_i = z_i$
 - Inner product triple $((a_i, y_i), c)$ such that $\sum_i a_i y_i = c$
 - For random $\{\varepsilon_i\}_i$,

$$[\alpha_i] = \varepsilon_i \cdot [x_i] + [a_i]$$

Open α_i
$$[v] = \sum_i (\alpha_i [y_i] - \varepsilon_i [z_i]) + [c]$$

Check $v = 0$

• Soundness = $1/|\mathbb{F}|$

Efficient Circuit for BN++

- Arithmetic in a large field (of size $\approx \lambda$)
 - Small field has a poor soundness
- Small number of multiplications (linear maps are free)

Efficient Circuit for BN++

- Arithmetic in a large field (of size $\approx \lambda$)
 - Small field has a poor soundness
- Small number of multiplications (linear maps are free)
- Repeated multiplier
 - If the same multiplier is repeated, the signer can save the signature size
 - $x_1 \cdot y = z_1, x_2 \cdot y = z_2$

Efficient Circuit for BN++

- Arithmetic in a large field (of size $\approx \lambda$)
 - Small field has a poor soundness
- Small number of multiplications (linear maps are free)
- Repeated multiplier
 - If the same multiplier is repeated, the signer can save the signature size
 - $x_1 \cdot y = z_1, x_2 \cdot y = z_2$
- Known output share
 - If an output of a multiplication is already known, then the signer can save the signature size
 - E.g., $y = x^{-1} \rightarrow xy = 1$, 1 is known without any computation

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
 - S-boxes on large field
 - Low multiplicative complexity

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
 - S-boxes on large field
 - Low multiplicative complexity
- Some symmetric primitives based on large S-boxes have been broken by algebraic attacks
 - MiMC (AC 16, AC 20)
 - Agrasta (C 18, AC 21)
 - Jarvis/Friday (ePrint 18, AC 19)
 - Chaghri (CCS 22, EC 23)

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
 - S-boxes on large field
 - Low multiplicative complexity
- Some symmetric primitives based on large S-boxes have been broken by algebraic attacks
 - MiMC (AC 16, AC 20)
 - Agrasta (C 18, AC 21)
 - Jarvis/Friday (ePrint 18, AC 19)
 - Chaghri (CCS 22, EC 23)

Inverse S-box

- Inverse S-box ($x \mapsto x^{-1}$) is widely used in MPC/ZKP-friendly ciphers
 - High degree, but quadratic relation (xy = 1)
 - Invertible
 - Nice DC/LC resistance
 - But, produces many linearly independent quadratic equations

Inverse S-box

- Inverse S-box ($x \mapsto x^{-1}$) is widely used in MPC/ZKP-friendly ciphers
 - High degree, but quadratic relation (xy = 1)
 - Invertible
 - Nice DC/LC resistance
 - But, produces many linearly independent quadratic equations

5*n* quadratic equations c.f. optimally n equations

= 0

Inverse S-box

- Inverse S-box ($x \mapsto x^{-1}$) is widely used in MPC/ZKP-friendly ciphers
 - High degree, but quadratic relation (xy = 1)
 - Invertible
 - Nice DC/LC resistance
 - But, produces many linearly independent quadratic equations

$$\begin{cases} f_1(x_1, \dots, x_n, y_1, \dots, y_n) = 0 \\ \vdots \\ f_{5n}(x_1, \dots, x_n, y_1, \dots, y_n) = 0 \end{cases}$$

5n quadratic equations c.f. optimally n equations More equations lead to a weaker resistance against algebraic attacks!

Candidates of Appropriate S-box

- Niho exponent
 - $x \mapsto x^{2^{s}+2^{s/2}-1}$ over $\mathbb{F}_{2^{n}}$, n = 2s + 1
 - *n* equations, high-degree
 - 2 multiplications, odd-length field
- NGG exponent (Nawaz et al., 2009)
 - $x \mapsto x^{2^{s+1}+2^{s-1}-1}$ over \mathbb{F}_{2^n} , n = 2s
 - 2*n* equations, even-length field, good DC/LC resistance
 - 2 multiplications

- Mersenne exponent
 - $x \mapsto x^{2^s-1}$ over \mathbb{F}_{2^n}
 - 3*n* equations, even-length field, single multiplication
 - moderate DC/LC resistance
- Gold exponent
 - $x \mapsto x^{2^{s+1}}$ over \mathbb{F}_{2^n}
 - Even-length field, single multiplication, good DC/LC resistance
 - 4*n* equations

Repetitive Structure for BN++

- Repeated multiplier technique (in BN++)
 - If prover needs to check multiple multiplications with a same multiplier,
 - e.g., $x_1 \cdot y = z_1, x_2 \cdot y = z_2$
 - Then, the prover can prove them in a batched way
 - More same multiplier \rightarrow Smaller signature size

Repetitive Structure for BN++

- Repeated multiplier technique (in BN++)
 - If prover needs to check multiple multiplications with a same multiplier,
 - e.g., $x_1 \cdot y = z_1, x_2 \cdot y = z_2$
 - Then, the prover can prove them in a batched way
 - More same multiplier \rightarrow Smaller signature size

Serial S-box (Limited application of repeated multiplier)

Parallel S-box (Full application of repeated multiplier)

- Mersenne S-box
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces 3*n* quadratic equations
 - Moderate DC/LC resistance

- Mersenne S-box
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces 3*n* quadratic equations
 - Moderate DC/LC resistance
- Repetitive structure
 - Parallel application of S-boxes
 - Feed-forward construction
 - Fully exploit the BN++ optimizations
 - Locally-computable output share

- Mersenne S-box
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces 3*n* quadratic equations
 - Moderate DC/LC resistance
- Repetitive structure
 - Parallel application of S-boxes
 - Feed-forward construction
 - Fully exploit the BN++ optimizations
 - Locally-computable output share
- Randomized structure
 - Affine layer is generated from XOF

Scheme	λ	n	ℓ	e_1	e_2	e_3	e_*
AIM-I AIM-III AIM-V	$128 \\ 192 \\ 256$	$128 \\ 192 \\ 256$	_	5	$27 \\ 29 \\ 53$	- - 7	5 7 5

- Mersenne S-box
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces 3*n* quadratic equations
 - Moderate DC/LC resistance
- Repetitive structure
 - Parallel application of S-boxes
 - Feed-forward construction
 - Fully exploit the BN++ optimizations
 - Locally-computable output share
- Randomized structure
 - Affine layer is generated from XOF

- Fukang Liu and Mohammad Mahzoun proposed a fast exhaustive search attack on AIM*
- It achieves 10-12 bits smaller complexity compared to brute-force attack on AIM
- The main vulnerability was that there are low-degree equations with n Boolean variables
- Increasing exponents resolves this vulnerability

- Liu introduce another possible vulnerability to our team*
- Setting a new variable $w = pt^{-1}$ leads to easier system than expected
 - AIM is claimed to be secure under an ln-variable system with 3ln quadratic equations
 - A 2*n*-variable system including 5*n* quadratic equations and 5*n* cubic equations

$$pt \cdot w = 1$$

$$Lin(pt^{2^{e_1}}w, pt^{2^{e_1}}w, pt^{2^{e_1}}w) \cdot (pt + ct) = Lin(pt^{2^{e_1}}w, pt^{2^{e_1}}w, pt^{2^{e_1}}w)^{2^{e_*}}$$

$$Lin(pt^{2^{e_1}}w, pt^{2^{e_1}}w, pt^{2^{e_1}}w) \cdot (1 + w \cdot ct) = w \cdot Lin(pt^{2^{e_1}}w, pt^{2^{e_1}}w, pt^{2^{e_1}}w)^{2^{e_*}}$$

• Note that this attack is **not practically feasible** on AIM

* In private communication

AIM2: Secure Patch for Algebraic Attacks (In Progress)

- Inverse Mersenne S-box
 - $Mer[e]^{-1}(x) = x^a$
 - $a = (2^e 1)^{-1} \mod (2^n 1)$
 - More resistant to algebraic attacks

AIM2: Secure Patch for Algebraic Attacks (In Progress)

- Inverse Mersenne S-box
 - $Mer[e]^{-1}(x) = x^a$
 - $a = (2^e 1)^{-1} \mod (2^n 1)$
 - More resistant to algebraic attacks
- Larger exponents
 - To mitigate fast exhaustive search

AIM2: Secure Patch for Algebraic Attacks (In Progress)

- Inverse Mersenne S-box
 - $Mer[e]^{-1}(x) = x^a$
 - $a = (2^e 1)^{-1} \mod (2^n 1)$
 - More resistant to algebraic attacks
- Larger exponents
 - To mitigate fast exhaustive search
- Fixed constant addition
 - To differentiate inputs of S-boxes
 - Increase the degree of composite power function

 $(x^{a})^{b}$ vs $(x^{a} + c)^{b}$

- Algebraic attacks
 - Fast exhaustive search: mitigated by high exponents
 - Brute-force search of quadratic equations
 - Toy experiment of good intermediate variables

- Algebraic attacks
 - Fast exhaustive search: mitigated by high exponents
 - Brute-force search of quadratic equations
 - Toy experiment of good intermediate variables
- Other attacks
 - Exhaustive key search: slightly increased complexity
 - Very recent analysis (Sep. 2) of Markku is also mitigated (and it will be updated)
 - LC/DC: almost same
 - Quantum attacks: complexities change not critically

- Algebraic attacks
 - Fast exhaustive search: mitigated by high exponents
 - Brute-force search of quadratic equations
 - Toy experiment of good intermediate variables
- Other attacks
 - Exhaustive key search: slightly increased complexity
 - Very recent analysis (Sep. 2) of Markku is also mitigated (and it will be updated)
 - LC/DC: almost same
 - Quantum attacks: complexities change not critically
- Performance
 - Signature size: exactly the same
 - Sign/verify time: about 10% increase

- Algebraic attacks
 - Fast exhaustive search: mitigated by high exponents
 - Brute-force search of quadratic equations
 - Toy experiment of good intermediate variables
- Other attacks
 - Exhaustive key search: slightly increased complexity
 - Very recent analysis (Sep. 2) of Markku is also mitigated (and it will be updated)
 - LC/DC: almost same
 - Quantum attacks: complexities change not critically
- Performance
 - Signature size: exactly the same
 - Sign/verify time: about 10% increase
- Preliminary version can be found in our website!

The AIMer Signature Scheme

AIMer Signature Scheme

- AIMer = BN++ proof of knowledge of AIM input
- Security is based on the one-wayness of AIM in the ROM

AIMer Signature Scheme

- AIMer = BN++ proof of knowledge of AIM input
- Security is based on the one-wayness of AIM in the ROM
- Advantages
 - Security based on only symmetric primitives
 - Fast key generation
 - Small key sizes
 - Trade-offs between signatures size and speed
 - Randomness misuse resistance

AIMer Signature Scheme

- AIMer = BN++ proof of knowledge of AIM input
- Security is based on the one-wayness of AIM in the ROM
- Advantages
 - Security based on only symmetric primitives
 - Fast key generation
 - Small key sizes
 - Trade-offs between signatures size and speed
 - Randomness misuse resistance
- Limitations
 - Newly-designed symmetric primitive AIM
 - Moderately large signature size (3.8~5.9 KB)
 - Slow signing/verifying speed (0.59~22 ms)

Performance Comparison

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Dilithium2	1312	2420	0.10	0.03
Falcon-512	897	690	0.27	0.04
SPHINCS+-128s	32	7856	315.74	0.35
SPHINCS+-128f	32	17088	16.32	0.97
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet	32	19776	7.09	5.24
Rainier ₃	32	8544	0.97	0.89
$BN++Rain_3$	32	6432	0.83	0.77
AIMer-L1 (Not updated)	32	5904	0.59	0.53
AIMer-L1 (Not updated)	32	3840	22.29	21.09

Some Remarks

- Remark
 - We submitted AIMer to KpqC and NIST PQC competition
 - Our homepage: <u>https://aimer-signature.org</u>
 - We are waiting for **third-party analysis**!
- Future work
 - Updates on the specification document
 - QROM security of AlMer
 - More optimization on BN++

Thank you! Check out our website!

